BPlusTree

B+ Trees

image.png

B+ Trees

vue_route

vue自动化路由

目的

解放双手,从此不用配置路由。当你看到项目中大批量的路由思考是拆分维护业务路由还是统一入口维护时,无需多虑,router-auto是你的最优选择,它帮你解决路由的维护成本,你只需要创建相应的文件夹,路由就能动态生成,路由拦截你可以在main.js中去拦截他,总之比你想象的开发还要简单。

  • router-auto github地址有帮助的可以star一下
  • router-auto npm地址欢迎提issue

实现效果

1

简要用法

具体用法请实时查看github或者npm,下面做一些简要用法介绍

引用

1
2
3
4
5
6
7
8
9
10
const RouterAuto = require('router-auto')

module.exports = {
entry: '...',
output: {},
module: {},
plugin:[
new RouterAuto()
]
}

项目结构

  • package.json 等等文件与目录
  • src 项目目录
    • page 页面目录
      • helloworld
        • Index.vue 页面入口
        • hello.vue 业务组件
        • router.js 额外配置
      • demo
        • test
          • Index.vue 页面入口
          • test.vue 业务组件
        • Index.vue 页面入口
      • home
        • Index.vue 页面入口

上面的目录结构生成的路由结构为

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import Vue from 'vue'
import Router from 'vue-router'
import helloworld from '@/page/helloworld/Index.vue'
import demo from '@/page/demo/Index.vue'
import demo_test from '@/page/demo/test/Index.vue'
import home from '@/page/home/Index.vue'

Vue.use(Router)

export default new Router({
mode:'history',
base:'/auto/',
routes:[{
path: '/helloworld/index',
name: 'helloworld',
component: helloworld
},{
path: '/demo/index',
name: 'demo',
component: demo
},{
path: '/demo/test/index',
name: 'demo_test',
component: demo_test
},{
path: '/home/index',
name: 'home',
component: home
}]
})

作者:ngaiwe
链接:https://juejin.im/post/5d90798151882576e44088e8
来源:掘金
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

python style rules

Python风格规范

分号

.. tip::
不要在行尾加分号, 也不要用分号将两条命令放在同一行.

.. _line_length:

行长度

.. tip::
每行不超过80个字符

例外:

#. 长的导入模块语句

#. 注释里的URL

不要使用反斜杠连接行.

Python会将 圆括号, 中括号和花括号中的行隐式的连接起来 <http://docs.python.org/2/reference/lexical_analysis.html#implicit-line-joining>_ , 你可以利用这个特点. 如果需要, 你可以在表达式外围增加一对额外的圆括号.

.. code-block:: python

Yes: foo_bar(self, width, height, color='black', design=None, x='foo',
             emphasis=None, highlight=0)

     if (width == 0 and height == 0 and
         color == 'red' and emphasis == 'strong'):    

如果一个文本字符串在一行放不下, 可以使用圆括号来实现隐式行连接:

.. code-block:: python

x = ('This will build a very long long '
     'long long long long long long string')

在注释中,如果必要,将长的URL放在一行上。

.. code-block:: python

Yes:  # See details at
      # http://www.example.com/us/developer/documentation/api/content/v2.0/csv_file_name_extension_full_specification.html

.. code-block:: python

No:  # See details at
     # http://www.example.com/us/developer/documentation/api/content/\
     # v2.0/csv_file_name_extension_full_specification.html     

注意上面例子中的元素缩进; 你可以在本文的 :ref:缩进 <indentation> 部分找到解释.

括号

.. tip::
宁缺毋滥的使用括号

除非是用于实现行连接, 否则不要在返回语句或条件语句中使用括号. 不过在元组两边使用括号是可以的.

.. code-block:: python

Yes: if foo:
         bar()
     while x:
         x = bar()
     if x and y:
         bar()
     if not x:
         bar()
     return foo
     for (x, y) in dict.items(): ...  

.. code-block:: python

No:  if (x):
         bar()
     if not(x):
         bar()
     return (foo)

.. _indentation:

缩进

.. tip::
用4个空格来缩进代码

绝对不要用tab, 也不要tab和空格混用. 对于行连接的情况, 你应该要么垂直对齐换行的元素(见 :ref:行长度 <line_length> 部分的示例), 或者使用4空格的悬挂式缩进(这时第一行不应该有参数):

.. code-block:: python

Yes: # Aligned with opening delimiter
foo = long_function_name(var_one, var_two,
var_three, var_four)

# Aligned with opening delimiter in a dictionary
foo = {
    long_dictionary_key: value1 +
                         value2,
    ...
}

# 4-space hanging indent; nothing on first line
foo = long_function_name(
    var_one, var_two, var_three,
    var_four)

# 4-space hanging indent in a dictionary
foo = {
    long_dictionary_key:
        long_dictionary_value,
    ...
}

.. code-block:: python

No:    # Stuff on first line forbidden
      foo = long_function_name(var_one, var_two,
          var_three, var_four)

      # 2-space hanging indent forbidden
      foo = long_function_name(
        var_one, var_two, var_three,
        var_four)

      # No hanging indent in a dictionary
      foo = {
          long_dictionary_key:
              long_dictionary_value,
              ...
      }

空行

.. tip::
顶级定义之间空两行, 方法定义之间空一行

顶级定义之间空两行, 比如函数或者类定义. 方法定义, 类定义与第一个方法之间, 都应该空一行. 函数或方法中, 某些地方要是你觉得合适, 就空一行.

空格

.. tip::
按照标准的排版规范来使用标点两边的空格

括号内不要有空格.

.. code-block:: python

Yes: spam(ham[1], {eggs: 2}, [])

.. code-block:: python

No:  spam( ham[ 1 ], { eggs: 2 }, [ ] )

不要在逗号, 分号, 冒号前面加空格, 但应该在它们后面加(除了在行尾).

.. code-block:: python

Yes: if x == 4:
         print x, y
     x, y = y, x

.. code-block:: python

No:  if x == 4 :
         print x , y
     x , y = y , x

参数列表, 索引或切片的左括号前不应加空格.

.. code-block:: python

Yes: spam(1)

.. code-block:: python

no: spam (1)

.. code-block:: python

Yes: dict['key'] = list[index]

.. code-block:: python

No:  dict ['key'] = list [index]       

在二元操作符两边都加上一个空格, 比如赋值(=), 比较(==, <, >, !=, <>, <=, >=, in, not in, is, is not), 布尔(and, or, not). 至于算术操作符两边的空格该如何使用, 需要你自己好好判断. 不过两侧务必要保持一致.

.. code-block:: python

Yes: x == 1

.. code-block:: python

No:  x<1

当’=’用于指示关键字参数或默认参数值时, 不要在其两侧使用空格.

.. code-block:: python

Yes: def complex(real, imag=0.0): return magic(r=real, i=imag)

.. code-block:: python

No:  def complex(real, imag = 0.0): return magic(r = real, i = imag)

不要用空格来垂直对齐多行间的标记, 因为这会成为维护的负担(适用于:, #, =等):

.. code-block:: python

Yes:
     foo = 1000  # comment
     long_name = 2  # comment that should not be aligned

     dictionary = {
         "foo": 1,
         "long_name": 2,
         }

.. code-block:: python

No:
     foo       = 1000  # comment
     long_name = 2     # comment that should not be aligned

     dictionary = {
         "foo"      : 1,
         "long_name": 2,
         }

Shebang

.. tip::
大部分.py文件不必以#!作为文件的开始. 根据 PEP-394 <http://www.python.org/dev/peps/pep-0394/>_ , 程序的main文件应该以 #!/usr/bin/python2或者 #!/usr/bin/python3开始.

(译者注: 在计算机科学中, Shebang <http://en.wikipedia.org/wiki/Shebang_(Unix)>_ (也称为Hashbang)是一个由井号和叹号构成的字符串行(#!), 其出现在文本文件的第一行的前两个字符. 在文件中存在Shebang的情况下, 类Unix操作系统的程序载入器会分析Shebang后的内容, 将这些内容作为解释器指令, 并调用该指令, 并将载有Shebang的文件路径作为该解释器的参数. 例如, 以指令#!/bin/sh开头的文件在执行时会实际调用/bin/sh程序.)

#!先用于帮助内核找到Python解释器, 但是在导入模块时, 将会被忽略. 因此只有被直接执行的文件中才有必要加入#!.

.. _comments:

注释

.. tip::
确保对模块, 函数, 方法和行内注释使用正确的风格

文档字符串

Python有一种独一无二的的注释方式: 使用文档字符串. 文档字符串是包, 模块, 类或函数里的第一个语句. 这些字符串可以通过对象的__doc__成员被自动提取, 并且被pydoc所用. (你可以在你的模块上运行pydoc试一把, 看看它长什么样). 我们对文档字符串的惯例是使用三重双引号"""( `PEP-257 <http://www.python.org/dev/peps/pep-0257/>`_ ). 一个文档字符串应该这样组织: 首先是一行以句号, 问号或惊叹号结尾的概述(或者该文档字符串单纯只有一行). 接着是一个空行. 接着是文档字符串剩下的部分, 它应该与文档字符串的第一行的第一个引号对齐. 下面有更多文档字符串的格式化规范. 

模块

每个文件应该包含一个许可样板. 根据项目使用的许可(例如, Apache 2.0, BSD, LGPL, GPL), 选择合适的样板.

函数和方法

下文所指的函数,包括函数, 方法, 以及生成器.

一个函数必须要有文档字符串, 除非它满足以下条件:

#. 外部不可见
#. 非常短小
#. 简单明了

文档字符串应该包含函数做什么, 以及输入和输出的详细描述. 通常, 不应该描述"怎么做", 除非是一些复杂的算法. 文档字符串应该提供足够的信息, 当别人编写代码调用该函数时, 他不需要看一行代码, 只要看文档字符串就可以了. 对于复杂的代码, 在代码旁边加注释会比使用文档字符串更有意义.

关于函数的几个方面应该在特定的小节中进行描述记录, 这几个方面如下文所述. 每节应该以一个标题行开始. 标题行以冒号结尾. 除标题行外, 节的其他内容应被缩进2个空格. 

Args:
    列出每个参数的名字, 并在名字后使用一个冒号和一个空格, 分隔对该参数的描述.如果描述太长超过了单行80字符,使用2或者4个空格的悬挂缩进(与文件其他部分保持一致).
    描述应该包括所需的类型和含义.
    如果一个函数接受*foo(可变长度参数列表)或者**bar (任意关键字参数), 应该详细列出*foo和**bar.

Returns: (或者 Yields: 用于生成器)
    描述返回值的类型和语义. 如果函数返回None, 这一部分可以省略.

Raises:
    列出与接口有关的所有异常.

.. code-block:: python

    def fetch_bigtable_rows(big_table, keys, other_silly_variable=None):
        """Fetches rows from a Bigtable.

        Retrieves rows pertaining to the given keys from the Table instance
        represented by big_table.  Silly things may happen if
        other_silly_variable is not None.

        Args:
            big_table: An open Bigtable Table instance.
            keys: A sequence of strings representing the key of each table row
                to fetch.
            other_silly_variable: Another optional variable, that has a much
                longer name than the other args, and which does nothing.

        Returns:
            A dict mapping keys to the corresponding table row data
            fetched. Each row is represented as a tuple of strings. For
            example:

            {'Serak': ('Rigel VII', 'Preparer'),
             'Zim': ('Irk', 'Invader'),
             'Lrrr': ('Omicron Persei 8', 'Emperor')}

            If a key from the keys argument is missing from the dictionary,
            then that row was not found in the table.

        Raises:
            IOError: An error occurred accessing the bigtable.Table object.
        """
        pass

类应该在其定义下有一个用于描述该类的文档字符串. 如果你的类有公共属性(Attributes), 那么文档中应该有一个属性(Attributes)段. 并且应该遵守和函数参数相同的格式.

.. code-block:: python

    class SampleClass(object):
        """Summary of class here.

        Longer class information....
        Longer class information....

        Attributes:
            likes_spam: A boolean indicating if we like SPAM or not.
            eggs: An integer count of the eggs we have laid.
        """

        def __init__(self, likes_spam=False):
            """Inits SampleClass with blah."""
            self.likes_spam = likes_spam
            self.eggs = 0

        def public_method(self):
            """Performs operation blah."""

块注释和行注释

最需要写注释的是代码中那些技巧性的部分. 如果你在下次 `代码审查 <http://en.wikipedia.org/wiki/Code_review>`_ 的时候必须解释一下, 那么你应该现在就给它写注释. 对于复杂的操作, 应该在其操作开始前写上若干行注释. 对于不是一目了然的代码, 应在其行尾添加注释. 

.. code-block:: python

    # We use a weighted dictionary search to find out where i is in
    # the array.  We extrapolate position based on the largest num
    # in the array and the array size and then do binary search to
    # get the exact number.

    if i & (i-1) == 0:        # True if i is 0 or a power of 2.

为了提高可读性, 注释应该至少离开代码2个空格. 

另一方面, 绝不要描述代码. 假设阅读代码的人比你更懂Python, 他只是不知道你的代码要做什么. 

.. code-block:: python

    # BAD COMMENT: Now go through the b array and make sure whenever i occurs
    # the next element is i+1

.. tip::
如果一个类不继承自其它类, 就显式的从object继承. 嵌套类也一样.

.. code-block:: python

Yes: class SampleClass(object):
         pass


     class OuterClass(object):

         class InnerClass(object):
             pass


     class ChildClass(ParentClass):
         """Explicitly inherits from another class already."""

.. code-block:: python

No: class SampleClass:
        pass


    class OuterClass:

        class InnerClass:
            pass

继承自 object 是为了使属性(properties)正常工作, 并且这样可以保护你的代码, 使其不受 PEP-3000 <http://www.python.org/dev/peps/pep-3000/>_ 的一个特殊的潜在不兼容性影响. 这样做也定义了一些特殊的方法, 这些方法实现了对象的默认语义, 包括 __new__, __init__, __delattr__, __getattribute__, __setattr__, __hash__, __repr__, and __str__ .

字符串

.. tip::
即使参数都是字符串, 使用%操作符或者格式化方法格式化字符串. 不过也不能一概而论, 你需要在+和%之间好好判定.

.. code-block:: python

Yes: x = a + b
     x = '%s, %s!' % (imperative, expletive)
     x = '{}, {}!'.format(imperative, expletive)
     x = 'name: %s; score: %d' % (name, n)
     x = 'name: {}; score: {}'.format(name, n)

.. code-block:: python

No: x = '%s%s' % (a, b)  # use + in this case
    x = '{}{}'.format(a, b)  # use + in this case
    x = imperative + ', ' + expletive + '!'
    x = 'name: ' + name + '; score: ' + str(n)

避免在循环中用+和+=操作符来累加字符串. 由于字符串是不可变的, 这样做会创建不必要的临时对象, 并且导致二次方而不是线性的运行时间. 作为替代方案, 你可以将每个子串加入列表, 然后在循环结束后用 .join 连接列表. (也可以将每个子串写入一个 cStringIO.StringIO 缓存中.)

.. code-block:: python

Yes: items = ['<table>']
     for last_name, first_name in employee_list:
         items.append('<tr><td>%s, %s</td></tr>' % (last_name, first_name))
     items.append('</table>')
     employee_table = ''.join(items)

.. code-block:: python

No: employee_table = '<table>'
    for last_name, first_name in employee_list:
        employee_table += '<tr><td>%s, %s</td></tr>' % (last_name, first_name)
    employee_table += '</table>'

在同一个文件中, 保持使用字符串引号的一致性. 使用单引号’或者双引号”之一用以引用字符串, 并在同一文件中沿用. 在字符串内可以使用另外一种引号, 以避免在字符串中使用. GPyLint已经加入了这一检查.

(译者注:GPyLint疑为笔误, 应为PyLint.)

.. code-block:: python

Yes:
Python(‘Why are you hiding your eyes?’)
Gollum(“I’m scared of lint errors.”)
Narrator(‘“Good!” thought a happy Python reviewer.’)

.. code-block:: python

No:
Python(“Why are you hiding your eyes?”)
Gollum(‘The lint. It burns. It burns us.’)
Gollum(“Always the great lint. Watching. Watching.”)

为多行字符串使用三重双引号”””而非三重单引号’’’. 当且仅当项目中使用单引号’来引用字符串时, 才可能会使用三重’’’为非文档字符串的多行字符串来标识引用. 文档字符串必须使用三重双引号”””. 不过要注意, 通常用隐式行连接更清晰, 因为多行字符串与程序其他部分的缩进方式不一致.

.. code-block:: python

Yes:
    print ("This is much nicer.\n"
           "Do it this way.\n")

.. code-block:: python

No:
      print """This is pretty ugly.
  Don't do this.
  """

文件和sockets

.. tip::
在文件和sockets结束时, 显式的关闭它.

除文件外, sockets或其他类似文件的对象在没有必要的情况下打开, 会有许多副作用, 例如:

#. 它们可能会消耗有限的系统资源, 如文件描述符. 如果这些资源在使用后没有及时归还系统, 那么用于处理这些对象的代码会将资源消耗殆尽.

#. 持有文件将会阻止对于文件的其他诸如移动、删除之类的操作.

#. 仅仅是从逻辑上关闭文件和sockets, 那么它们仍然可能会被其共享的程序在无意中进行读或者写操作. 只有当它们真正被关闭后, 对于它们尝试进行读或者写操作将会抛出异常, 并使得问题快速显现出来.

而且, 幻想当文件对象析构时, 文件和sockets会自动关闭, 试图将文件对象的生命周期和文件的状态绑定在一起的想法, 都是不现实的. 因为有如下原因:

#. 没有任何方法可以确保运行环境会真正的执行文件的析构. 不同的Python实现采用不同的内存管理技术, 比如延时垃圾处理机制. 延时垃圾处理机制可能会导致对象生命周期被任意无限制的延长.

#. 对于文件意外的引用,会导致对于文件的持有时间超出预期(比如对于异常的跟踪, 包含有全局变量等).

推荐使用 "with"语句 <http://docs.python.org/reference/compound_stmts.html#the-with-statement>_ 以管理文件:

.. code-block:: python

with open("hello.txt") as hello_file:
    for line in hello_file:
        print line

对于不支持使用”with”语句的类似文件的对象,使用 contextlib.closing():

.. code-block:: python

import contextlib

with contextlib.closing(urllib.urlopen("http://www.python.org/")) as front_page:
    for line in front_page:
        print line

Legacy AppEngine 中Python 2.5的代码如使用”with”语句, 需要添加 “from future import with_statement”.

TODO注释

.. tip::
为临时代码使用TODO注释, 它是一种短期解决方案. 不算完美, 但够好了.

TODO注释应该在所有开头处包含”TODO”字符串, 紧跟着是用括号括起来的你的名字, email地址或其它标识符. 然后是一个可选的冒号. 接着必须有一行注释, 解释要做什么. 主要目的是为了有一个统一的TODO格式, 这样添加注释的人就可以搜索到(并可以按需提供更多细节). 写了TODO注释并不保证写的人会亲自解决问题. 当你写了一个TODO, 请注上你的名字.

.. code-block:: python

# TODO(kl@gmail.com): Use a "*" here for string repetition.
# TODO(Zeke) Change this to use relations.

如果你的TODO是”将来做某事”的形式, 那么请确保你包含了一个指定的日期(“2009年11月解决”)或者一个特定的事件(“等到所有的客户都可以处理XML请求就移除这些代码”).

导入格式

.. tip::
每个导入应该独占一行

.. code-block:: python

Yes: import os
     import sys

.. code-block:: python

No:  import os, sys

导入总应该放在文件顶部, 位于模块注释和文档字符串之后, 模块全局变量和常量之前. 导入应该按照从最通用到最不通用的顺序分组:

#. 标准库导入

#. 第三方库导入

#. 应用程序指定导入

每种分组中, 应该根据每个模块的完整包路径按字典序排序, 忽略大小写.

.. code-block:: python

import foo
from foo import bar
from foo.bar import baz
from foo.bar import Quux
from Foob import ar

语句

.. tip::
通常每个语句应该独占一行

不过, 如果测试结果与测试语句在一行放得下, 你也可以将它们放在同一行. 如果是if语句, 只有在没有else时才能这样做. 特别地, 绝不要对 try/except 这样做, 因为try和except不能放在同一行.

.. code-block:: python

Yes:

  if foo: bar(foo)

.. code-block:: python

No:

  if foo: bar(foo)
  else:   baz(foo)

  try:               bar(foo)
  except ValueError: baz(foo)

  try:
      bar(foo)
  except ValueError: baz(foo)

访问控制

.. tip::
在Python中, 对于琐碎又不太重要的访问函数, 你应该直接使用公有变量来取代它们, 这样可以避免额外的函数调用开销. 当添加更多功能时, 你可以用属性(property)来保持语法的一致性.

(译者注: 重视封装的面向对象程序员看到这个可能会很反感, 因为他们一直被教育: 所有成员变量都必须是私有的! 其实, 那真的是有点麻烦啊. 试着去接受Pythonic哲学吧)

另一方面, 如果访问更复杂, 或者变量的访问开销很显著, 那么你应该使用像 get_foo()set_foo() 这样的函数调用. 如果之前的代码行为允许通过属性(property)访问 , 那么就不要将新的访问函数与属性绑定. 这样, 任何试图通过老方法访问变量的代码就没法运行, 使用者也就会意识到复杂性发生了变化.

命名

.. tip::
module_name, package_name, ClassName, method_name, ExceptionName, function_name, GLOBAL_VAR_NAME, instance_var_name, function_parameter_name, local_var_name.

应该避免的名称

#. 单字符名称, 除了计数器和迭代器.
#. 包/模块名中的连字符(-)
#. 双下划线开头并结尾的名称(Python保留, 例如__init__)

命名约定

#. 所谓"内部(Internal)"表示仅模块内可用, 或者, 在类内是保护或私有的.
#. 用单下划线(_)开头表示模块变量或函数是protected的(使用from module import \*时不会包含).
#. 用双下划线(__)开头的实例变量或方法表示类内私有.
#. 将相关的类和顶级函数放在同一个模块里. 不像Java, 没必要限制一个类一个模块.
#. 对类名使用大写字母开头的单词(如CapWords, 即Pascal风格), 但是模块名应该用小写加下划线的方式(如lower_with_under.py). 尽管已经有很多现存的模块使用类似于CapWords.py这样的命名, 但现在已经不鼓励这样做, 因为如果模块名碰巧和类名一致, 这会让人困扰. 

Python之父Guido推荐的规范

=========================== ==================== ======================================================================
Type Public Internal
=========================== ==================== ======================================================================
Modules lower_with_under _lower_with_under
Packages lower_with_under
Classes CapWords _CapWords
Exceptions CapWords
Functions lower_with_under() _lower_with_under()
Global/Class Constants CAPS_WITH_UNDER _CAPS_WITH_UNDER
Global/Class Variables lower_with_under _lower_with_under
Instance Variables lower_with_under _lower_with_under (protected) or __lower_with_under (private)
Method Names lower_with_under() _lower_with_under() (protected) or __lower_with_under() (private)
Function/Method Parameters lower_with_under
Local Variables lower_with_under
=========================== ==================== ======================================================================

.. _main:

Main

.. tip::
即使是一个打算被用作脚本的文件, 也应该是可导入的. 并且简单的导入不应该导致这个脚本的主功能(main functionality)被执行, 这是一种副作用. 主功能应该放在一个main()函数中.

在Python中, pydoc以及单元测试要求模块必须是可导入的. 你的代码应该在执行主程序前总是检查 if __name__ == '__main__' , 这样当模块被导入时主程序就不会被执行.

.. code-block:: python

def main():
      ...

if __name__ == '__main__':
    main()

所有的顶级代码在模块导入时都会被执行. 要小心不要去调用函数, 创建对象, 或者执行那些不应该在使用pydoc时执行的操作.

Recommendation System

目录

1. 什么是推荐系统

推荐系统是利用电子商务网站向客户提供商品信息和建议,帮助用户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程。个性化推荐是根据用户的兴趣特点和购买行为,向用户推荐用户感兴趣的信息和商品。

随着电子商务规模的不断扩大,商品个数和种类快速增长,顾客需要花费大量的时间才能找到自己想买的商品。这种浏览大量无关的信息和产品过程无疑会使淹没在信息过载问题中的消费者不断流失。

为了解决这些问题,个性化推荐系统应运而生。个性化推荐系统是建立在海量数据挖掘基础上的一种高级商务智能平台,以帮助电子商务网站为其顾客购物提供完全个性化的决策支持和信息服务。

常见的推荐栏位例如:淘宝的猜你喜欢、看了又看、推荐商品,美团的首页推荐、附近推荐等。

推荐系统是比较偏向于工程类的系统,要做得更加的精确,需要的不仅仅是推荐算法,还有用户意图识别、文本分析、行为分析等,是一个综合性很强的系统。

2. 总体架构

本节介绍的几种推荐系统架构,并不是互相独立的关系,实际的推荐系统可能会用到其中一种或者几种的架构。在实际设计的过程中,读者可以把本文介绍的架构作为一个设计的起点,更多地结合自身业务特点进行独立思
考,从而设计出适合自身业务的系统。

根据响应用户行为的速度不同,推荐系统可以大致分为基于离线训练和在线训练的推荐系统。

2.1 离线推荐

于离线训练的推荐系统架构是最常见的一种推荐系统架构。这里的“离线”训练指的是使用历史一段时间( 比如周或者几周 )的数据进行训练,模型迭代的周期较长(一般 以小时为单位 )。模型拟合的是用户的中长期兴趣。

如下图所示, 一个典型的基于离线训练的推荐系统架构由数据上报、离线训练、在线存储、实时计算和 A/B 测试这几个模块组成。其中,数据上报和离线训练组成了监督学习中的学习系统,而实时计算和 A/B 测试组成了预测系统。另外,除了模型之外,还有一个在线存储模块,用于存储模型和模型需要的特征信息供实时计算模块调用。图中的各个模块组成了训练和预测两条数据流,训练的数据流搜集业务的数据最后生成模型存储于在线存储模块;预测的数据流接受业务的预测请求,通过 A/B 测试模块访问实时计算模块获取预测结果。

  1. 数据上报:据上报模块的作用是搜集业务数据组成训练样本。一般分为收集、验证、清洗和转换几个步骤。将收集的数据转化为训练所需要的样本格式,保存到离线存储模块。

  2. 离线训练:线训练模块又细分为离线存储和离线计算。实际业务中使用的推荐系统一般都需要处理海量的用户行为数据,所以离线存储模块需要有一个分布式的文件系统或者存储平台来存储这些数据。离线计算常见的操作有:样本抽样、特征工程、模型训练、相似度计算等。

  3. 在线存储:因为线上的服务对于时延都有严格的要求。比如,某个用户打开手机 APP ,他肯定希望APP 能够快速响应,如果耗时过长,就会影响用户的体验。一般来说,这就要求推荐系统在几十毫秒以内处理完用户请求返回推荐结果,所以,针对线上的服务,需要有一个专门的在线存储模块,负责存储用于线上的模型和特征数据 。

  4. 实时推荐:实时推荐模块的功能是对来自业务的新请求进行预测。1.获取用户特征;2.调用推荐模型;3.结果排序。

    在实际应用中,因为业务的物品列表太大,如果实时计算对每 个物品使用复杂的模型进行打分,就有可能耗时过长而影响用户满意度。所以,一种常见的做法是将推荐列表生成分为召回和排序两步。召回的作用是从大量的候选物品中(例如上百万)筛选出一批用户较可能喜欢的候选集 (一般是几百)。排序的作用是对召回得到的相对较小的候选集使用排序模型进行打分。更进一步,在排序得到推荐列表后,为了多样性和运
    营的一些考虑,还会加上第三步重排过滤,用于对精排后的推荐列表进行处理。

  5. A/B测试:对于互联网产品来说, A/B 测试基本上是一个必备的模块,对于推荐系统来说也不例外,它可以帮助开发人员评估新算法对客户行为的影响。除了 离线的指标外,一个新的推荐算法上线之前 般都会经过 A/B 测试来测试新算法的有效性。

下图是与之对应的实际系统中各个组件的流转过程。需要注意的是生成推荐列表就已经做完了召回和排序的操作,业务层直接调用API就可以得到这个推荐列表。

2.2 在线训练

对于业务来说,我们希望用户对于上 个广告的反馈 (喜欢或者不 欢,有没有点击 ,可以很快地用于下
一个广告的推荐中。这就要求我们用另 种方法来解决这个问题,这个方法就是在线训练。

基于在线训练的推荐系统架构适合于广告和电商等高维度大数据量且对实时性要求很高的场景 相比较基于离线训练的推荐系统,基于在线训练的推荐系统不区分训练和测试阶段,每个回合都在学习,通过实时的反馈来调整策略。 方面,在线训练要求其样本、特征和模型的处理都是实时的,以便推荐的内容更快地反映用户实时的喜好;另一方面,因为在线训练井不需要将所有的训练数据都存储下来,所以不需要巨大的离线存储开销,使得系统具有很好的伸缩性,可以支持超大的数据量和模型。

  1. 样本处理:和基于离线训练的推荐系统相比,在线训练在数据上报阶段的主要不同体现在样本处理上。,对于离线训练来说,上报后的数据先是被存储到一个分布式文件系统,然后等待离线计算任务来对样本进行处理;对于在线训练来说,对样本的去重、过滤和采样等计算都需要实时进行。
  2. 实时特性:实时特征模块通过实时处理样本数据拼接训练需要的特征构造训练样本,输入流式训练模块用于更新模型。该模块的主要的功能是特征拼接和特征工程。
  3. 流式训练:、流式训练模块的主要作用是使用实时训练样本来更新模型。推荐算法中增量更新部分的计算,通过流式计算的方式来进行更新。在线训练的优势之一,是可以支持模型的稀疏存储。训练方面,在线模型不一定都是从零开始训练,而是可以将离线训练得到的模型参数作为基础,在这个基础上进行增量训练。
  4. 模型存储和加载:模型一般存储在参数服务器中。模型更新后,将模型文件推送到线上存储,并由线上服务模块动态加载。

3. 特征数据

要训练推荐模型,就需要先收集用户的行为数据生成特征向量以后才能进行训练,而一个特征向量由特征以及特征的权重组成,在利用用户行为计算特征向量时需要考虑以下因素。

  1. 用户行为的种类:在一个网站中,用户可以对物品产生很多不同种类的行为。用户可以浏览物品、单击物品的链接、收藏物品、给物品打分、购买物品、评论物品、给物品打上不同的标签、和好友分享物品、搜索不同的关键词等。这些行为都会对物品特征的权重产生影响,但不同行为的影响不同,大多时候很难确定什么行为更加重要,一般的标准就是用户付出代价越大的行为权重越高。
  2. 用户行为产生的时间:一般来说,用户近期的行为比较重要,而用户很久之前的行为相对比较次要。因此,如果用户最近购买过某一个物品,那么这个物品对应的特征将会具有比较高的权重。
  3. 用户行为的次数:有时用户对一个物品会产生很多次行为。比如用户会听一首歌很多次,看一部电视剧的很多集等。因此用户对同一个物品的同一种行为发生的次数也反映了用户对物品的兴趣,行为次数多的物品对应的特征权重越高。
  4. 物品的热门程度:如果用户对一个很热门的物品产生了行为,往往不能代表用户的个性,因为用户可能是在跟风,可能对该物品并没有太大兴趣,特别是在用户对一个热门物品产生了偶尔几次不重要的行为(比如浏览行为)时,就更说明用户对这个物品可能没有什么兴趣,可能只是因为这个物品的链接到处都是,很容易点到而已。反之,如果用户对一个不热门的物品产生了行为,就说明了用户的个性需求。因此,推荐引擎在生成用户特征时会加重不热门物品对应的特征的权重。
  5. 数据去燥:对样本做去噪。对于数据中混杂的刷单等类作弊行为的数据,要将其排除出训练数据,否则它会直接影响模型的效果;样本中的缺失值也要做处理。
  6. 正负样本均衡:一般我们收集用户的行为数据都是属于正样本,造成了严重的不平衡。所以对于一个用户,从他没有过行为的物品中采样出一些物品作为负样本,但采样时,保证每个用户的正负样本数目相当。
  7. 特征组合:我们需要考虑特征与特征之间的关系。例如在美团酒店搜索排序中,酒店的销量、价格、用户的消费水平等是强相关的因素,用户的年龄、位置可能是弱相关的因素,用户的ID是完全无关的因素。在确定了哪些因素可能与预测目标相关后,我们需要将此信息表示为数值类型,即为特征抽取的过程。除此之外,用户在App上的浏览、交易等行为记录中包含了大量的信息,特征抽取则主要是从这些信息抽取出相关因素,用数值变量进行表示。常用的统计特征有计数特征,如浏览次数、下单次数等;比率特征,如点击率、转化率等;统计量特征,如价格均值、标准差、分位数、偏度、峰度等。

4. 协同过滤算法

协同过滤算法起源于 1992 年,被 Xerox 公司用于个性化定制邮件系统。Xerox 司的用户需要在数十种主题中选择三到五种主题,协同过滤算法根据不同的主题过滤邮件,最终达到个性化的目的。

协同过滤算法分为基于物品的协同过滤和基于用户的协同过滤,输出结果为 TOPn 的推荐列表。

4.1 基于物品的协同过滤(ItemCF)

基于物品的协同过滤算法的核心思想:给用户推荐那些和他们之前喜欢的物品相似的物品。

基于物品的协同过滤算法首先计算物品之间的相似度, 计算相似度的方法有以下几种:

  1. 基于共同喜欢物品的用户列表计算

    在此,分母中 N(i) 是购买物品 i 的用户数,N(j) 是购买物品 j 的用户数,而分子 是同时购买物品i 和物品 j 的用户数。。可见上述的公式的核心是计算同时购买这件商品的人数比例 。当同时购买这两个物品人数越多,他们的相似度也就越高。另外值得注意的是,在分母中我们用了物品总购买人数做惩罚,也就是说某个物品可能很热门,导致它经常会被和其他物品一起购买,所以除以它的总购买人数,来降低它和其他物品的相似分数。

  2. 基于余弦的相似度计算

    上面的方法计算物品相似度是直接使同时购买这两个物品的人数。但是也有可能存在用户购买了但不喜欢的情况 所以如果数据集包含了具体的评分数据 我们可以进一步把用户评分引入到相似度计算中 。

    其中 是用户 k 对物品 i 的评分,如果没有评分则为 0。

  3. 热门物品的惩罚

    对于热门物品的问题,可以用如下公式解决:

    时,N(i) 越小,惩罚得越厉害,从而会使热 物品相关性分数下降。

4.2 基于用户的协同过滤(UserCF)

基于用户的协同过滤(User CF )的原理其实是和基于物品的协同过滤类似的。所不同的是,基于物品的协同过滤的原理是用户 U 购买了 A 物品,推荐给用户 U 和 A 相似的物品 B、C、D。而基于用户的协同过滤,是先计算用户 U 与其他的用户的相似度,然后取和 U 最相似的几个用户,把他们购买过的物品推荐给用户U。

为了计算用户相似度,我们首先要把用户购买过物品的索引数据转化成物品被用户购买过的索引数据,即物品的倒排索引:

建立好物品的倒排索引后,就可以根据相似度公式计算用户之间的相似度:

其中 N(a) 表示用户 a 购买物品的数量,N(b) 表示用户 b 购买物品的数量,N(a)∩N(b) 表示用户 a 和 b 购买相同物品的数量。有了用户的相似数据,针对用户 U 挑选 K 个最相似的用户,把他们购买过的物品中,U 未购买过的物品推荐给用户 U 即可。

4.3 矩阵分解

上述计算会得到一个相似度矩阵,而这个矩阵的大小和纬度都是很大的,需要进行降维处理,用到的是SVD的降维方法,具体可以参考我之前写的降维方法:2.5 降维方法

基于稀疏自编码的矩阵分解

矩阵分解技术在推荐领域的应用比较成熟,但是通过上一节的介绍,我们不难发现矩阵分解本质上只通过一次分解来对 原矩阵进行逼近,特征挖掘的层次不够深入。另外矩阵分解也没有运用到物品本身的内容特征,例如书本的类别分类、音乐的流派分类等。随着神经网络技术的兴起,笔者发现通过多层感知机,可以得到更加深度的特征表示,并且可以对内容分类特征加以应用。首先,我们介绍一下稀疏自编码神经网络的设计思路。

  1. 基础的自编码结构

    最简单的自编码结构如下图,构造个三层的神经网络,我们让输出层等于输入层,且中间层的维度远低于输入层和输出层,这样就得到了第一层的特征压缩。

    简单来说自编码神经网络尝试学习中间层约等于输入层的函数。换句话说,它尝试逼近一个恒等函数。如果网络的输入数据是完全随机的,比如每一个输入都是一个跟其他特征完全无关的独立同分布高斯随机变 ,那么这一压缩表示将会非常难于学习。但是如果输入数据中隐含着 些特定的结构,比如某些输入特征是彼此相关的,那么这一算法就可以发现输入数据中的这些相关性。

  2. 多层结构

    基于以上的单层隐藏层的网络结构,我们可以扩展至多层网络结构,学习到更高层次的抽象特征。

5. 隐语义模型

5.1 基本思想

推荐系统中一个重要的分支,隐语义建模。隐语义模型LFM:Latent Factor Model,其核心思想就是通过隐含特征联系用户兴趣和物品。

过程分为三个部分,将物品映射到隐含分类,确定用户对隐含分类的兴趣,然后选择用户感兴趣的分类中的物品推荐给用户。它是基于用户行为统计的自动聚类。

隐语义模型在Top-N推荐中的应用十分广泛。常用的隐语义模型,LSA(Latent Semantic Analysis),LDA(Latent Dirichlet Allocation),主题模型(Topic Model),矩阵分解(Matrix Factorization)等等。

首先通过一个例子来理解一下这个模型,比如说有两个用户A和B,目前有用户的阅读列表,用户A的兴趣涉及侦探小说,科普图书以及一些计算机技术书,而用户B的兴趣比较集中在数学和机器学习方面。那么如何给A和B推荐图书呢?

对于UserCF,首先需要找到和他们看了同样书的其他用户(兴趣相似的用户),然后在给他们推荐那些用户喜欢的其他书。
对于ItemCF,需要给他们推荐和他们已经看的书相似的书,比如用户B 看了很多数据挖掘方面的书,那么可以给他推荐机器学习或者模式识别方面的书。

还有一种方法就是使用隐语义模型,可以对书和物品的兴趣进行分类。对于某个用户,首先得到他的兴趣分类,然后从分类中挑选他可能喜欢的物品。

5.2 模型理解

  1. 如何给物品进行分类?
  2. 如何确定用户对哪些类的物品感兴趣,以及感兴趣的程度?
  3. 对于一个给定的类,选择哪些属于这个类的物品推荐给用户,以及如何确定这些物品在一个类中的权重?

为了解决上面的问题,研究人员提出:为什么我们不从数据出发,自动地找到那些类,然后进行个性化推荐,隐语义分析技术因为采取基于用户行为统计的自动聚类,较好地解决了上面的问题。隐语义分析技术从诞生到今天产生了很多著名的模型和方法,其中和推荐技术相关的有pLSA,LDA,隐含类别模型(latent class model), 隐含主题模型(latent topic model), 矩阵分解(matrix factorization)。

LFM通过如下公式计算用户 u 对物品 i 的兴趣:

这个公式中 是模型的参数,其中 度量了用户 u 的兴趣和第 k 个隐类的关系,而 度量了第 k 个隐类和物品 i 之间的关系。那么,下面的问题就是如何计算这两个参数。

对最优化理论或者机器学习有所了解的读者,可能对如何计算这两个参数都比较清楚。这两个参数是从数据集中计算出来的。要计算这两个参数,需要一个训练集,对于每个用户u,训练集里都包含了用户u喜欢的物品和不感兴趣的物品,通过学习这个数据集,就可以获得上面的模型参数。

6. 排序算法

在工业应用中,推荐系统通常可分为两部分,召回和排序。协同过滤属于召回的算法,从召回中得到一个比较小的推荐列表,然后经过排序之后才会输出到最终的推荐列表里,是一个有序的推荐列表。

这个过程会从几千万 item 中筛选出几百或者上千的候选集,然后在排序阶段选出30个给到每位用户。这个排序可理解为一个函数,F(user, item, context),输入为用户、物品、环境,输出一个0到1之间的分数,取分数最高的几首。这一过程通常称为 CTR 预估。那么 F 函数常见的运作形式有:

  1. Logistic Regression

    最简单的是逻辑回归(Logistic Regression),一个广义线性模型。拿某 user 的用户画像(一个向量)比如[3, 1],拼接上某 item 的物品画像比如[4, 0],再加上代表 context 的向量[0, 1, 1]后得到[3, 1, 4, 0, 0, 1, 1],若该 user 曾与该 item 发生过联系则 label 为1,这些加起来是一个正样本,同时可以将用户“跳过”的 item 或热门的却没有与用户产生过联系的 item 作为负样本,label 为0。按照这样的输入和输出就可以训练出排序算法了。详细模型见:2. 逻辑回归

  2. GBDT

    使用梯度提升决策树(GBDT) 的方案也可以解决这个排序的问题,只是模型与 LR 不一样。GBDT作为集成模型,会使用多棵决策树,每棵树去拟合前一棵树的残差来得到很好的拟合效果。一个样本输入到一棵树中,会根据各节点的条件往下走到某个叶子节点,将此节点值置为1,其余置为0。详细模型算法见:3.2 GBDT

  3. GBDT+LR

    GBDT与LR的stacking模型相对于只用GBDT会有略微的提升,更大的好处是防止GBDT过拟合。升级为GBDT+LR后,线上效果提升了约5%,并且因为省去了对新特征进行人工转换的步骤,增加特征的迭代测试也更容易了。

  4. GBDT+FM

    GBDT是不支持高维稀疏特征的,如果将高维特征加到LR中,一方面需要人工组合高维特征,另一方面模型维度和计算复杂度会是O(N^2)级别的增长。所以设计了GBDT+FM的模型如图所示,采用Factorization Machines模型替换LR。

    Factorization Machines(FM)模型如下所示:

    具有以下几个优点
    ①前两项为一个线性模型,相当于LR模型的作用
    ②第三项为一个二次交叉项,能够自动对特征进行交叉组合
    ③通过增加隐向量,模型训练和预测的计算复杂度降为了O(N)
    ④支持稀疏特征。

    几个优点,使的GBDT+FM具有了良好的稀疏特征支持,FM使用GBDT的叶子结点和稀疏特征(内容特征)作为输入,模型结构示意图如下,GBDT+FM模型上线后相比GBDT+LR在各项指标的效果提升在4%~6%之间。

  5. DNN+GBDT+FM

    GBDT+FM模型,对embedding等具有结构信息的深度特征利用不充分,而深度学习(Deep Neural Network)能够对嵌入式(embedding)特征和普通稠密特征进行学习,抽取出深层信息,提高模型的准确性,并已经成功应用到众多机器学习领域。因此我们将DNN引入到排序模型中,提高排序整体质量。

    DNN+GBDT+FM的ensemble模型架构如图所示,FM层作为模型的最后一层,即融合层,其输入由三部分组成:DNN的最后一层隐藏层、GBDT的输出叶子节点、高维稀疏特征。DNN+GBDT+FM的ensemble模型架构介绍如下所示,该模型上线后相对于GBDT+FM有4%的效果提升。

    使用分布式的TensorFlow进行训练,使用基于TensorFlow Serving的微服务进行在线预测,DNN+GBDT+FM的ensemble模型使用的是Adam优化器。Adam结合了The Adaptive Gradient Algorithm(AdaGrad)和Root Mean Square Propagation(RMSProp)算法。具有更优的收敛速率,每个变量有独自的下降步长,整体下降步长会根据当前梯度进行调节,能够适应带噪音的数据。实验测试了多种优化器,Adam的效果是最优的。

工业界DNN ranking现状

  1. Youtube于2016年推出DNN排序算法。
  2. 上海交通大学和UCL于2016年推出Product-based Neural Network(PNN)网络进行用户点击预测。PNN相当于在DNN层做了特征交叉,我们的做法是把特征交叉交给FM去做,DNN专注于深层信息的提取。
  3. Google于2016年推出Wide And Deep Model,这个也是我们当前模型的基础,在此基础上使用FM替换了Cross Feature LR,简化了计算复杂度,提高交叉的泛化能力。
  4. 阿里今年使用attention机制推出了Deep Interest Network(DIN)进行商品点击率预估,优化embedding向量的准确性,值得借鉴。

7. 评估测试

7.1 A/B测试

新的推荐模型上线后要进行A/B测试,将它和旧的算法进行比较。

AB测试是一种很常用的在线评测算法的实验方法。它通过一定的规则将用户随机分成几组,并对不同组的用户采用不同的算法,然后通过统计不同组用户的各种不同的评测指标比较不同算法,比如可以统计不同组用户的点击率,通过点击率比较不同算法的性能。对AB测试感兴趣的读者可以浏览一下网站http://www.abtests.com/ ,该网站给出了很多通过实际AB测试提高网站用户满意度的例子,从中我们可以学习到如何进行合理的AB测试。

切分流量是AB测试中的关键,不同的层以及控制这些层的团队需要从一个统一的地方获得自己AB测试的流量,而不同层之间的流量应该是正交的。

“正交性”是从几何中借来的术语。如果两条直线相交成直角,他们就是正交的。用向量术语来说,这两条直线互不依赖。

下图是一个简单的AB测试系统。用户进入网站后,流量分配系统决定用户是否需要被进行AB测试,如果需要的话,流量分配系统会给用户打上在测试中属于什么分组的标签。然后用户浏览网页,而用户在浏览网页时的行为都会被通过日志系统发回后台的日志数据库。此时,如果用户有测试分组的标签,那么该标签也会被发回后台数据库。在后台,实验人员的工作首先是配置流量分配系统,决定满足什么条件的用户参加什么样的测试。其次,实验人员需要统计日志数据库中的数据,通过评测系统生成不同分组用户的实验报告,并比较和评测实验结果。

当完成了AB测试后,根据指标结果,如果优于之前的推荐算法,那么旧的算法就可以替换成新的了。

7.2 其它评估方法

模型准备就绪后,一般会先通过离线指标来评估模型的好坏, 然后再决定能否上线测试。离线算法评估常见的指标包括准确率、覆盖度 、多样性、新颖性和 UC 等。在线测试一般通过 A/B 测试进行,常见的指标有点击率、用户停留时间、 广告收入等,需要注意分析统计显著性。同时,需要注意短期的指标和长期的指标相结合, 一些短期指标的提升有时候反而会导致长期指标下降 比如 ,经常推荐美女或者搞笑类的内容会带来短期的点击率提高,但是可能会引起长期的用户粘性下降。设计者需要从自己的产品角度出发,根据产品的需要制定评估指标,这样才能更好地指导推荐系统的优化方向。常见的评价指标如下:

8. 推荐系统冷启动问题

冷启动( cold start )在推荐系统中表示该系统积累数据量过少,无法给新用户作个性化推荐的问题,这是产品推荐的一大难题。每个有推荐功能的产品都会遇到冷启动的问题。一方面,当新商品时上架 会遇到冷启动的问题,没有收集到任何一个用户对其浏览、点击或者购买的行为,也无从判断如何将商品进行推荐;另一方面,新用户到来的时候,如果没有他在应用上的行为数据,也无法预测其兴趣,如果给用户的推荐千篇律,没有亮点,会使用户在一开始就对产品失去兴趣,从而放弃使用。所以在冷启动的时候要同时考虑用户的冷启动和物品的冷启动。

基本上,冷启动题可以分为以下三类。

8.1 用户冷启动

用户冷启动主要解决如何给新用户作个性化推荐的问题。当新用户到来时,我 没有他的行为数据,所以也无法根据他的历史行为预 其兴趣,从而无法借此给他做个性化推荐。解决方法参考以下:

  1. 利用用户的账号信息。
  2. 利用用户的手机 IMEI 号进行冷启动。
  3. 制造选工页,让用户选择自己感兴趣的点后,即时生成粗粒度的推荐。

8.2 物品冷启动

物品冷启动主要解决如何将新的物品推荐给可能对它感兴趣的用户这一问题。解决方法参考以下:

  1. 利用物品的内容、分类信息。
  2. 利用专家标注的数据。

8.3 系统冷启动

系统冷启动主要解决如何在一个新开发的网站上(还没有用户,也没有用户行为,只有一些物品的信息)设计个性推荐系统,从而在产品刚上线时就让用户体验到个性 推荐服务这一问题。

9. 参考文献

  1. 推荐系统实践–项亮
  2. 推荐系统与深度学习
  3. 美团机器学习实践

作者:@mantchs

GitHub:https://github.com/NLP-LOVE/ML-NLP

欢迎大家加入讨论!共同完善此项目!群号:【541954936】NLP面试学习群

os.py

os.py

image.png

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
r"""OS routines for NT or Posix depending on what system we're on.

This exports:
- all functions from posix or nt, e.g. unlink, stat, etc.
- os.path is either posixpath or ntpath
- os.name is either 'posix' or 'nt'
- os.curdir is a string representing the current directory (always '.')
- os.pardir is a string representing the parent directory (always '..')
- os.sep is the (or a most common) pathname separator ('/' or '\\')
- os.extsep is the extension separator (always '.')
- os.altsep is the alternate pathname separator (None or '/')
- os.pathsep is the component separator used in $PATH etc
- os.linesep is the line separator in text files ('\r' or '\n' or '\r\n')
- os.defpath is the default search path for executables
- os.devnull is the file path of the null device ('/dev/null', etc.)

Programs that import and use 'os' stand a better chance of being
portable between different platforms. Of course, they must then
only use functions that are defined by all platforms (e.g., unlink
and opendir), and leave all pathname manipulation to os.path
(e.g., split and join).
"""

#'
import abc
import sys
import stat as st

_names = sys.builtin_module_names

# Note: more names are added to __all__ later.
__all__ = ["altsep", "curdir", "pardir", "sep", "pathsep", "linesep",
"defpath", "name", "path", "devnull", "SEEK_SET", "SEEK_CUR",
"SEEK_END", "fsencode", "fsdecode", "get_exec_path", "fdopen",
"popen", "extsep"]

def _exists(name):
return name in globals()

def _get_exports_list(module):
try:
return list(module.__all__)
except AttributeError:
return [n for n in dir(module) if n[0] != '_']

# Any new dependencies of the os module and/or changes in path separator
# requires updating importlib as well.
if 'posix' in _names:
name = 'posix'
linesep = '\n'
from posix import *
try:
from posix import _exit
__all__.append('_exit')
except ImportError:
pass
import posixpath as path

try:
from posix import _have_functions
except ImportError:
pass

import posix
__all__.extend(_get_exports_list(posix))
del posix

elif 'nt' in _names:
name = 'nt'
linesep = '\r\n'
from nt import *
try:
from nt import _exit
__all__.append('_exit')
except ImportError:
pass
import ntpath as path

import nt
__all__.extend(_get_exports_list(nt))
del nt

try:
from nt import _have_functions
except ImportError:
pass

else:
raise ImportError('no os specific module found')

sys.modules['os.path'] = path
from os.path import (curdir, pardir, sep, pathsep, defpath, extsep, altsep,
devnull)

del _names


if _exists("_have_functions"):
_globals = globals()
def _add(str, fn):
if (fn in _globals) and (str in _have_functions):
_set.add(_globals[fn])

_set = set()
_add("HAVE_FACCESSAT", "access")
_add("HAVE_FCHMODAT", "chmod")
_add("HAVE_FCHOWNAT", "chown")
_add("HAVE_FSTATAT", "stat")
_add("HAVE_FUTIMESAT", "utime")
_add("HAVE_LINKAT", "link")
_add("HAVE_MKDIRAT", "mkdir")
_add("HAVE_MKFIFOAT", "mkfifo")
_add("HAVE_MKNODAT", "mknod")
_add("HAVE_OPENAT", "open")
_add("HAVE_READLINKAT", "readlink")
_add("HAVE_RENAMEAT", "rename")
_add("HAVE_SYMLINKAT", "symlink")
_add("HAVE_UNLINKAT", "unlink")
_add("HAVE_UNLINKAT", "rmdir")
_add("HAVE_UTIMENSAT", "utime")
supports_dir_fd = _set

_set = set()
_add("HAVE_FACCESSAT", "access")
supports_effective_ids = _set

_set = set()
_add("HAVE_FCHDIR", "chdir")
_add("HAVE_FCHMOD", "chmod")
_add("HAVE_FCHOWN", "chown")
_add("HAVE_FDOPENDIR", "listdir")
_add("HAVE_FDOPENDIR", "scandir")
_add("HAVE_FEXECVE", "execve")
_set.add(stat) # fstat always works
_add("HAVE_FTRUNCATE", "truncate")
_add("HAVE_FUTIMENS", "utime")
_add("HAVE_FUTIMES", "utime")
_add("HAVE_FPATHCONF", "pathconf")
if _exists("statvfs") and _exists("fstatvfs"): # mac os x10.3
_add("HAVE_FSTATVFS", "statvfs")
supports_fd = _set

_set = set()
_add("HAVE_FACCESSAT", "access")
# Some platforms don't support lchmod(). Often the function exists
# anyway, as a stub that always returns ENOSUP or perhaps EOPNOTSUPP.
# (No, I don't know why that's a good design.) ./configure will detect
# this and reject it--so HAVE_LCHMOD still won't be defined on such
# platforms. This is Very Helpful.
#
# However, sometimes platforms without a working lchmod() *do* have
# fchmodat(). (Examples: Linux kernel 3.2 with glibc 2.15,
# OpenIndiana 3.x.) And fchmodat() has a flag that theoretically makes
# it behave like lchmod(). So in theory it would be a suitable
# replacement for lchmod(). But when lchmod() doesn't work, fchmodat()'s
# flag doesn't work *either*. Sadly ./configure isn't sophisticated
# enough to detect this condition--it only determines whether or not
# fchmodat() minimally works.
#
# Therefore we simply ignore fchmodat() when deciding whether or not
# os.chmod supports follow_symlinks. Just checking lchmod() is
# sufficient. After all--if you have a working fchmodat(), your
# lchmod() almost certainly works too.
#
# _add("HAVE_FCHMODAT", "chmod")
_add("HAVE_FCHOWNAT", "chown")
_add("HAVE_FSTATAT", "stat")
_add("HAVE_LCHFLAGS", "chflags")
_add("HAVE_LCHMOD", "chmod")
if _exists("lchown"): # mac os x10.3
_add("HAVE_LCHOWN", "chown")
_add("HAVE_LINKAT", "link")
_add("HAVE_LUTIMES", "utime")
_add("HAVE_LSTAT", "stat")
_add("HAVE_FSTATAT", "stat")
_add("HAVE_UTIMENSAT", "utime")
_add("MS_WINDOWS", "stat")
supports_follow_symlinks = _set

del _set
del _have_functions
del _globals
del _add


# Python uses fixed values for the SEEK_ constants; they are mapped
# to native constants if necessary in posixmodule.c
# Other possible SEEK values are directly imported from posixmodule.c
SEEK_SET = 0
SEEK_CUR = 1
SEEK_END = 2

# Super directory utilities.
# (Inspired by Eric Raymond; the doc strings are mostly his)

def makedirs(name, mode=0o777, exist_ok=False):
"""makedirs(name [, mode=0o777][, exist_ok=False])

Super-mkdir; create a leaf directory and all intermediate ones. Works like
mkdir, except that any intermediate path segment (not just the rightmost)
will be created if it does not exist. If the target directory already
exists, raise an OSError if exist_ok is False. Otherwise no exception is
raised. This is recursive.

"""
head, tail = path.split(name)
if not tail:
head, tail = path.split(head)
if head and tail and not path.exists(head):
try:
makedirs(head, exist_ok=exist_ok)
except FileExistsError:
# Defeats race condition when another thread created the path
pass
cdir = curdir
if isinstance(tail, bytes):
cdir = bytes(curdir, 'ASCII')
if tail == cdir: # xxx/newdir/. exists if xxx/newdir exists
return
try:
mkdir(name, mode)
except OSError:
# Cannot rely on checking for EEXIST, since the operating system
# could give priority to other errors like EACCES or EROFS
if not exist_ok or not path.isdir(name):
raise

def removedirs(name):
"""removedirs(name)

Super-rmdir; remove a leaf directory and all empty intermediate
ones. Works like rmdir except that, if the leaf directory is
successfully removed, directories corresponding to rightmost path
segments will be pruned away until either the whole path is
consumed or an error occurs. Errors during this latter phase are
ignored -- they generally mean that a directory was not empty.

"""
rmdir(name)
head, tail = path.split(name)
if not tail:
head, tail = path.split(head)
while head and tail:
try:
rmdir(head)
except OSError:
break
head, tail = path.split(head)

def renames(old, new):
"""renames(old, new)

Super-rename; create directories as necessary and delete any left
empty. Works like rename, except creation of any intermediate
directories needed to make the new pathname good is attempted
first. After the rename, directories corresponding to rightmost
path segments of the old name will be pruned until either the
whole path is consumed or a nonempty directory is found.

Note: this function can fail with the new directory structure made
if you lack permissions needed to unlink the leaf directory or
file.

"""
head, tail = path.split(new)
if head and tail and not path.exists(head):
makedirs(head)
rename(old, new)
head, tail = path.split(old)
if head and tail:
try:
removedirs(head)
except OSError:
pass

__all__.extend(["makedirs", "removedirs", "renames"])

def walk(top, topdown=True, onerror=None, followlinks=False):
"""Directory tree generator.

For each directory in the directory tree rooted at top (including top
itself, but excluding '.' and '..'), yields a 3-tuple

dirpath, dirnames, filenames

dirpath is a string, the path to the directory. dirnames is a list of
the names of the subdirectories in dirpath (excluding '.' and '..').
filenames is a list of the names of the non-directory files in dirpath.
Note that the names in the lists are just names, with no path components.
To get a full path (which begins with top) to a file or directory in
dirpath, do os.path.join(dirpath, name).

If optional arg 'topdown' is true or not specified, the triple for a
directory is generated before the triples for any of its subdirectories
(directories are generated top down). If topdown is false, the triple
for a directory is generated after the triples for all of its
subdirectories (directories are generated bottom up).

When topdown is true, the caller can modify the dirnames list in-place
(e.g., via del or slice assignment), and walk will only recurse into the
subdirectories whose names remain in dirnames; this can be used to prune the
search, or to impose a specific order of visiting. Modifying dirnames when
topdown is false is ineffective, since the directories in dirnames have
already been generated by the time dirnames itself is generated. No matter
the value of topdown, the list of subdirectories is retrieved before the
tuples for the directory and its subdirectories are generated.

By default errors from the os.scandir() call are ignored. If
optional arg 'onerror' is specified, it should be a function; it
will be called with one argument, an OSError instance. It can
report the error to continue with the walk, or raise the exception
to abort the walk. Note that the filename is available as the
filename attribute of the exception object.

By default, os.walk does not follow symbolic links to subdirectories on
systems that support them. In order to get this functionality, set the
optional argument 'followlinks' to true.

Caution: if you pass a relative pathname for top, don't change the
current working directory between resumptions of walk. walk never
changes the current directory, and assumes that the client doesn't
either.

Example:

import os
from os.path import join, getsize
for root, dirs, files in os.walk('python/Lib/email'):
print(root, "consumes", end="")
print(sum([getsize(join(root, name)) for name in files]), end="")
print("bytes in", len(files), "non-directory files")
if 'CVS' in dirs:
dirs.remove('CVS') # don't visit CVS directories

"""
top = fspath(top)
dirs = []
nondirs = []
walk_dirs = []

# We may not have read permission for top, in which case we can't
# get a list of the files the directory contains. os.walk
# always suppressed the exception then, rather than blow up for a
# minor reason when (say) a thousand readable directories are still
# left to visit. That logic is copied here.
try:
# Note that scandir is global in this module due
# to earlier import-*.
scandir_it = scandir(top)
except OSError as error:
if onerror is not None:
onerror(error)
return

with scandir_it:
while True:
try:
try:
entry = next(scandir_it)
except StopIteration:
break
except OSError as error:
if onerror is not None:
onerror(error)
return

try:
is_dir = entry.is_dir()
except OSError:
# If is_dir() raises an OSError, consider that the entry is not
# a directory, same behaviour than os.path.isdir().
is_dir = False

if is_dir:
dirs.append(entry.name)
else:
nondirs.append(entry.name)

if not topdown and is_dir:
# Bottom-up: recurse into sub-directory, but exclude symlinks to
# directories if followlinks is False
if followlinks:
walk_into = True
else:
try:
is_symlink = entry.is_symlink()
except OSError:
# If is_symlink() raises an OSError, consider that the
# entry is not a symbolic link, same behaviour than
# os.path.islink().
is_symlink = False
walk_into = not is_symlink

if walk_into:
walk_dirs.append(entry.path)

# Yield before recursion if going top down
if topdown:
yield top, dirs, nondirs

# Recurse into sub-directories
islink, join = path.islink, path.join
for dirname in dirs:
new_path = join(top, dirname)
# Issue #23605: os.path.islink() is used instead of caching
# entry.is_symlink() result during the loop on os.scandir() because
# the caller can replace the directory entry during the "yield"
# above.
if followlinks or not islink(new_path):
yield from walk(new_path, topdown, onerror, followlinks)
else:
# Recurse into sub-directories
for new_path in walk_dirs:
yield from walk(new_path, topdown, onerror, followlinks)
# Yield after recursion if going bottom up
yield top, dirs, nondirs

__all__.append("walk")

if {open, stat} <= supports_dir_fd and {scandir, stat} <= supports_fd:

def fwalk(top=".", topdown=True, onerror=None, *, follow_symlinks=False, dir_fd=None):
"""Directory tree generator.

This behaves exactly like walk(), except that it yields a 4-tuple

dirpath, dirnames, filenames, dirfd

`dirpath`, `dirnames` and `filenames` are identical to walk() output,
and `dirfd` is a file descriptor referring to the directory `dirpath`.

The advantage of fwalk() over walk() is that it's safe against symlink
races (when follow_symlinks is False).

If dir_fd is not None, it should be a file descriptor open to a directory,
and top should be relative; top will then be relative to that directory.
(dir_fd is always supported for fwalk.)

Caution:
Since fwalk() yields file descriptors, those are only valid until the
next iteration step, so you should dup() them if you want to keep them
for a longer period.

Example:

import os
for root, dirs, files, rootfd in os.fwalk('python/Lib/email'):
print(root, "consumes", end="")
print(sum([os.stat(name, dir_fd=rootfd).st_size for name in files]),
end="")
print("bytes in", len(files), "non-directory files")
if 'CVS' in dirs:
dirs.remove('CVS') # don't visit CVS directories
"""
if not isinstance(top, int) or not hasattr(top, '__index__'):
top = fspath(top)
# Note: To guard against symlink races, we use the standard
# lstat()/open()/fstat() trick.
if not follow_symlinks:
orig_st = stat(top, follow_symlinks=False, dir_fd=dir_fd)
topfd = open(top, O_RDONLY, dir_fd=dir_fd)
try:
if (follow_symlinks or (st.S_ISDIR(orig_st.st_mode) and
path.samestat(orig_st, stat(topfd)))):
yield from _fwalk(topfd, top, isinstance(top, bytes),
topdown, onerror, follow_symlinks)
finally:
close(topfd)

def _fwalk(topfd, toppath, isbytes, topdown, onerror, follow_symlinks):
# Note: This uses O(depth of the directory tree) file descriptors: if
# necessary, it can be adapted to only require O(1) FDs, see issue
# #13734.

scandir_it = scandir(topfd)
dirs = []
nondirs = []
entries = None if topdown or follow_symlinks else []
for entry in scandir_it:
name = entry.name
if isbytes:
name = fsencode(name)
try:
if entry.is_dir():
dirs.append(name)
if entries is not None:
entries.append(entry)
else:
nondirs.append(name)
except OSError:
try:
# Add dangling symlinks, ignore disappeared files
if entry.is_symlink():
nondirs.append(name)
except OSError:
pass

if topdown:
yield toppath, dirs, nondirs, topfd

for name in dirs if entries is None else zip(dirs, entries):
try:
if not follow_symlinks:
if topdown:
orig_st = stat(name, dir_fd=topfd, follow_symlinks=False)
else:
assert entries is not None
name, entry = name
orig_st = entry.stat(follow_symlinks=False)
dirfd = open(name, O_RDONLY, dir_fd=topfd)
except OSError as err:
if onerror is not None:
onerror(err)
continue
try:
if follow_symlinks or path.samestat(orig_st, stat(dirfd)):
dirpath = path.join(toppath, name)
yield from _fwalk(dirfd, dirpath, isbytes,
topdown, onerror, follow_symlinks)
finally:
close(dirfd)

if not topdown:
yield toppath, dirs, nondirs, topfd

__all__.append("fwalk")

# Make sure os.environ exists, at least
try:
environ
except NameError:
environ = {}

def execl(file, *args):
"""execl(file, *args)

Execute the executable file with argument list args, replacing the
current process. """
execv(file, args)

def execle(file, *args):
"""execle(file, *args, env)

Execute the executable file with argument list args and
environment env, replacing the current process. """
env = args[-1]
execve(file, args[:-1], env)

def execlp(file, *args):
"""execlp(file, *args)

Execute the executable file (which is searched for along $PATH)
with argument list args, replacing the current process. """
execvp(file, args)

def execlpe(file, *args):
"""execlpe(file, *args, env)

Execute the executable file (which is searched for along $PATH)
with argument list args and environment env, replacing the current
process. """
env = args[-1]
execvpe(file, args[:-1], env)

def execvp(file, args):
"""execvp(file, args)

Execute the executable file (which is searched for along $PATH)
with argument list args, replacing the current process.
args may be a list or tuple of strings. """
_execvpe(file, args)

def execvpe(file, args, env):
"""execvpe(file, args, env)

Execute the executable file (which is searched for along $PATH)
with argument list args and environment env , replacing the
current process.
args may be a list or tuple of strings. """
_execvpe(file, args, env)

__all__.extend(["execl","execle","execlp","execlpe","execvp","execvpe"])

def _execvpe(file, args, env=None):
if env is not None:
exec_func = execve
argrest = (args, env)
else:
exec_func = execv
argrest = (args,)
env = environ

if path.dirname(file):
exec_func(file, *argrest)
return
saved_exc = None
path_list = get_exec_path(env)
if name != 'nt':
file = fsencode(file)
path_list = map(fsencode, path_list)
for dir in path_list:
fullname = path.join(dir, file)
try:
exec_func(fullname, *argrest)
except (FileNotFoundError, NotADirectoryError) as e:
last_exc = e
except OSError as e:
last_exc = e
if saved_exc is None:
saved_exc = e
if saved_exc is not None:
raise saved_exc
raise last_exc


def get_exec_path(env=None):
"""Returns the sequence of directories that will be searched for the
named executable (similar to a shell) when launching a process.

*env* must be an environment variable dict or None. If *env* is None,
os.environ will be used.
"""
# Use a local import instead of a global import to limit the number of
# modules loaded at startup: the os module is always loaded at startup by
# Python. It may also avoid a bootstrap issue.
import warnings

if env is None:
env = environ

# {b'PATH': ...}.get('PATH') and {'PATH': ...}.get(b'PATH') emit a
# BytesWarning when using python -b or python -bb: ignore the warning
with warnings.catch_warnings():
warnings.simplefilter("ignore", BytesWarning)

try:
path_list = env.get('PATH')
except TypeError:
path_list = None

if supports_bytes_environ:
try:
path_listb = env[b'PATH']
except (KeyError, TypeError):
pass
else:
if path_list is not None:
raise ValueError(
"env cannot contain 'PATH' and b'PATH' keys")
path_list = path_listb

if path_list is not None and isinstance(path_list, bytes):
path_list = fsdecode(path_list)

if path_list is None:
path_list = defpath
return path_list.split(pathsep)


# Change environ to automatically call putenv(), unsetenv if they exist.
from _collections_abc import MutableMapping

class _Environ(MutableMapping):
def __init__(self, data, encodekey, decodekey, encodevalue, decodevalue, putenv, unsetenv):
self.encodekey = encodekey
self.decodekey = decodekey
self.encodevalue = encodevalue
self.decodevalue = decodevalue
self.putenv = putenv
self.unsetenv = unsetenv
self._data = data

def __getitem__(self, key):
try:
value = self._data[self.encodekey(key)]
except KeyError:
# raise KeyError with the original key value
raise KeyError(key) from None
return self.decodevalue(value)

def __setitem__(self, key, value):
key = self.encodekey(key)
value = self.encodevalue(value)
self.putenv(key, value)
self._data[key] = value

def __delitem__(self, key):
encodedkey = self.encodekey(key)
self.unsetenv(encodedkey)
try:
del self._data[encodedkey]
except KeyError:
# raise KeyError with the original key value
raise KeyError(key) from None

def __iter__(self):
# list() from dict object is an atomic operation
keys = list(self._data)
for key in keys:
yield self.decodekey(key)

def __len__(self):
return len(self._data)

def __repr__(self):
return 'environ({{{}}})'.format(', '.join(
('{!r}: {!r}'.format(self.decodekey(key), self.decodevalue(value))
for key, value in self._data.items())))

def copy(self):
return dict(self)

def setdefault(self, key, value):
if key not in self:
self[key] = value
return self[key]

try:
_putenv = putenv
except NameError:
_putenv = lambda key, value: None
else:
if "putenv" not in __all__:
__all__.append("putenv")

try:
_unsetenv = unsetenv
except NameError:
_unsetenv = lambda key: _putenv(key, "")
else:
if "unsetenv" not in __all__:
__all__.append("unsetenv")

def _createenviron():
if name == 'nt':
# Where Env Var Names Must Be UPPERCASE
def check_str(value):
if not isinstance(value, str):
raise TypeError("str expected, not %s" % type(value).__name__)
return value
encode = check_str
decode = str
def encodekey(key):
return encode(key).upper()
data = {}
for key, value in environ.items():
data[encodekey(key)] = value
else:
# Where Env Var Names Can Be Mixed Case
encoding = sys.getfilesystemencoding()
def encode(value):
if not isinstance(value, str):
raise TypeError("str expected, not %s" % type(value).__name__)
return value.encode(encoding, 'surrogateescape')
def decode(value):
return value.decode(encoding, 'surrogateescape')
encodekey = encode
data = environ
return _Environ(data,
encodekey, decode,
encode, decode,
_putenv, _unsetenv)

# unicode environ
environ = _createenviron()
del _createenviron


def getenv(key, default=None):
"""Get an environment variable, return None if it doesn't exist.
The optional second argument can specify an alternate default.
key, default and the result are str."""
return environ.get(key, default)

supports_bytes_environ = (name != 'nt')
__all__.extend(("getenv", "supports_bytes_environ"))

if supports_bytes_environ:
def _check_bytes(value):
if not isinstance(value, bytes):
raise TypeError("bytes expected, not %s" % type(value).__name__)
return value

# bytes environ
environb = _Environ(environ._data,
_check_bytes, bytes,
_check_bytes, bytes,
_putenv, _unsetenv)
del _check_bytes

def getenvb(key, default=None):
"""Get an environment variable, return None if it doesn't exist.
The optional second argument can specify an alternate default.
key, default and the result are bytes."""
return environb.get(key, default)

__all__.extend(("environb", "getenvb"))

def _fscodec():
encoding = sys.getfilesystemencoding()
errors = sys.getfilesystemencodeerrors()

def fsencode(filename):
"""Encode filename (an os.PathLike, bytes, or str) to the filesystem
encoding with 'surrogateescape' error handler, return bytes unchanged.
On Windows, use 'strict' error handler if the file system encoding is
'mbcs' (which is the default encoding).
"""
filename = fspath(filename) # Does type-checking of `filename`.
if isinstance(filename, str):
return filename.encode(encoding, errors)
else:
return filename

def fsdecode(filename):
"""Decode filename (an os.PathLike, bytes, or str) from the filesystem
encoding with 'surrogateescape' error handler, return str unchanged. On
Windows, use 'strict' error handler if the file system encoding is
'mbcs' (which is the default encoding).
"""
filename = fspath(filename) # Does type-checking of `filename`.
if isinstance(filename, bytes):
return filename.decode(encoding, errors)
else:
return filename

return fsencode, fsdecode

fsencode, fsdecode = _fscodec()
del _fscodec

# Supply spawn*() (probably only for Unix)
if _exists("fork") and not _exists("spawnv") and _exists("execv"):

P_WAIT = 0
P_NOWAIT = P_NOWAITO = 1

__all__.extend(["P_WAIT", "P_NOWAIT", "P_NOWAITO"])

# XXX Should we support P_DETACH? I suppose it could fork()**2
# and close the std I/O streams. Also, P_OVERLAY is the same
# as execv*()?

def _spawnvef(mode, file, args, env, func):
# Internal helper; func is the exec*() function to use
if not isinstance(args, (tuple, list)):
raise TypeError('argv must be a tuple or a list')
if not args or not args[0]:
raise ValueError('argv first element cannot be empty')
pid = fork()
if not pid:
# Child
try:
if env is None:
func(file, args)
else:
func(file, args, env)
except:
_exit(127)
else:
# Parent
if mode == P_NOWAIT:
return pid # Caller is responsible for waiting!
while 1:
wpid, sts = waitpid(pid, 0)
if WIFSTOPPED(sts):
continue
elif WIFSIGNALED(sts):
return -WTERMSIG(sts)
elif WIFEXITED(sts):
return WEXITSTATUS(sts)
else:
raise OSError("Not stopped, signaled or exited???")

def spawnv(mode, file, args):
"""spawnv(mode, file, args) -> integer

Execute file with arguments from args in a subprocess.
If mode == P_NOWAIT return the pid of the process.
If mode == P_WAIT return the process's exit code if it exits normally;
otherwise return -SIG, where SIG is the signal that killed it. """
return _spawnvef(mode, file, args, None, execv)

def spawnve(mode, file, args, env):
"""spawnve(mode, file, args, env) -> integer

Execute file with arguments from args in a subprocess with the
specified environment.
If mode == P_NOWAIT return the pid of the process.
If mode == P_WAIT return the process's exit code if it exits normally;
otherwise return -SIG, where SIG is the signal that killed it. """
return _spawnvef(mode, file, args, env, execve)

# Note: spawnvp[e] isn't currently supported on Windows

def spawnvp(mode, file, args):
"""spawnvp(mode, file, args) -> integer

Execute file (which is looked for along $PATH) with arguments from
args in a subprocess.
If mode == P_NOWAIT return the pid of the process.
If mode == P_WAIT return the process's exit code if it exits normally;
otherwise return -SIG, where SIG is the signal that killed it. """
return _spawnvef(mode, file, args, None, execvp)

def spawnvpe(mode, file, args, env):
"""spawnvpe(mode, file, args, env) -> integer

Execute file (which is looked for along $PATH) with arguments from
args in a subprocess with the supplied environment.
If mode == P_NOWAIT return the pid of the process.
If mode == P_WAIT return the process's exit code if it exits normally;
otherwise return -SIG, where SIG is the signal that killed it. """
return _spawnvef(mode, file, args, env, execvpe)


__all__.extend(["spawnv", "spawnve", "spawnvp", "spawnvpe"])


if _exists("spawnv"):
# These aren't supplied by the basic Windows code
# but can be easily implemented in Python

def spawnl(mode, file, *args):
"""spawnl(mode, file, *args) -> integer

Execute file with arguments from args in a subprocess.
If mode == P_NOWAIT return the pid of the process.
If mode == P_WAIT return the process's exit code if it exits normally;
otherwise return -SIG, where SIG is the signal that killed it. """
return spawnv(mode, file, args)

def spawnle(mode, file, *args):
"""spawnle(mode, file, *args, env) -> integer

Execute file with arguments from args in a subprocess with the
supplied environment.
If mode == P_NOWAIT return the pid of the process.
If mode == P_WAIT return the process's exit code if it exits normally;
otherwise return -SIG, where SIG is the signal that killed it. """
env = args[-1]
return spawnve(mode, file, args[:-1], env)


__all__.extend(["spawnl", "spawnle"])


if _exists("spawnvp"):
# At the moment, Windows doesn't implement spawnvp[e],
# so it won't have spawnlp[e] either.
def spawnlp(mode, file, *args):
"""spawnlp(mode, file, *args) -> integer

Execute file (which is looked for along $PATH) with arguments from
args in a subprocess with the supplied environment.
If mode == P_NOWAIT return the pid of the process.
If mode == P_WAIT return the process's exit code if it exits normally;
otherwise return -SIG, where SIG is the signal that killed it. """
return spawnvp(mode, file, args)

def spawnlpe(mode, file, *args):
"""spawnlpe(mode, file, *args, env) -> integer

Execute file (which is looked for along $PATH) with arguments from
args in a subprocess with the supplied environment.
If mode == P_NOWAIT return the pid of the process.
If mode == P_WAIT return the process's exit code if it exits normally;
otherwise return -SIG, where SIG is the signal that killed it. """
env = args[-1]
return spawnvpe(mode, file, args[:-1], env)


__all__.extend(["spawnlp", "spawnlpe"])


# Supply os.popen()
def popen(cmd, mode="r", buffering=-1):
if not isinstance(cmd, str):
raise TypeError("invalid cmd type (%s, expected string)" % type(cmd))
if mode not in ("r", "w"):
raise ValueError("invalid mode %r" % mode)
if buffering == 0 or buffering is None:
raise ValueError("popen() does not support unbuffered streams")
import subprocess, io
if mode == "r":
proc = subprocess.Popen(cmd,
shell=True,
stdout=subprocess.PIPE,
bufsize=buffering)
return _wrap_close(io.TextIOWrapper(proc.stdout), proc)
else:
proc = subprocess.Popen(cmd,
shell=True,
stdin=subprocess.PIPE,
bufsize=buffering)
return _wrap_close(io.TextIOWrapper(proc.stdin), proc)

# Helper for popen() -- a proxy for a file whose close waits for the process
class _wrap_close:
def __init__(self, stream, proc):
self._stream = stream
self._proc = proc
def close(self):
self._stream.close()
returncode = self._proc.wait()
if returncode == 0:
return None
if name == 'nt':
return returncode
else:
return returncode << 8 # Shift left to match old behavior
def __enter__(self):
return self
def __exit__(self, *args):
self.close()
def __getattr__(self, name):
return getattr(self._stream, name)
def __iter__(self):
return iter(self._stream)

# Supply os.fdopen()
def fdopen(fd, *args, **kwargs):
if not isinstance(fd, int):
raise TypeError("invalid fd type (%s, expected integer)" % type(fd))
import io
return io.open(fd, *args, **kwargs)


# For testing purposes, make sure the function is available when the C
# implementation exists.
def _fspath(path):
"""Return the path representation of a path-like object.

If str or bytes is passed in, it is returned unchanged. Otherwise the
os.PathLike interface is used to get the path representation. If the
path representation is not str or bytes, TypeError is raised. If the
provided path is not str, bytes, or os.PathLike, TypeError is raised.
"""
if isinstance(path, (str, bytes)):
return path

# Work from the object's type to match method resolution of other magic
# methods.
path_type = type(path)
try:
path_repr = path_type.__fspath__(path)
except AttributeError:
if hasattr(path_type, '__fspath__'):
raise
else:
raise TypeError("expected str, bytes or os.PathLike object, "
"not " + path_type.__name__)
if isinstance(path_repr, (str, bytes)):
return path_repr
else:
raise TypeError("expected {}.__fspath__() to return str or bytes, "
"not {}".format(path_type.__name__,
type(path_repr).__name__))

# If there is no C implementation, make the pure Python version the
# implementation as transparently as possible.
if not _exists('fspath'):
fspath = _fspath
fspath.__name__ = "fspath"


class PathLike(abc.ABC):

"""Abstract base class for implementing the file system path protocol."""

@abc.abstractmethod
def __fspath__(self):
"""Return the file system path representation of the object."""
raise NotImplementedError

@classmethod
def __subclasshook__(cls, subclass):
return hasattr(subclass, '__fspath__')

LinkedList类

LinkedList类

image.png

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*/

package java.util;

import java.util.function.Consumer;

/**
* Doubly-linked list implementation of the {@code List} and {@code Deque}
* interfaces. Implements all optional list operations, and permits all
* elements (including {@code null}).
*
* <p>All of the operations perform as could be expected for a doubly-linked
* list. Operations that index into the list will traverse the list from
* the beginning or the end, whichever is closer to the specified index.
*
* <p><strong>Note that this implementation is not synchronized.</strong>
* If multiple threads access a linked list concurrently, and at least
* one of the threads modifies the list structurally, it <i>must</i> be
* synchronized externally. (A structural modification is any operation
* that adds or deletes one or more elements; merely setting the value of
* an element is not a structural modification.) This is typically
* accomplished by synchronizing on some object that naturally
* encapsulates the list.
*
* If no such object exists, the list should be "wrapped" using the
* {@link Collections#synchronizedList Collections.synchronizedList}
* method. This is best done at creation time, to prevent accidental
* unsynchronized access to the list:<pre>
* List list = Collections.synchronizedList(new LinkedList(...));</pre>
*
* <p>The iterators returned by this class's {@code iterator} and
* {@code listIterator} methods are <i>fail-fast</i>: if the list is
* structurally modified at any time after the iterator is created, in
* any way except through the Iterator's own {@code remove} or
* {@code add} methods, the iterator will throw a {@link
* ConcurrentModificationException}. Thus, in the face of concurrent
* modification, the iterator fails quickly and cleanly, rather than
* risking arbitrary, non-deterministic behavior at an undetermined
* time in the future.
*
* <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
* as it is, generally speaking, impossible to make any hard guarantees in the
* presence of unsynchronized concurrent modification. Fail-fast iterators
* throw {@code ConcurrentModificationException} on a best-effort basis.
* Therefore, it would be wrong to write a program that depended on this
* exception for its correctness: <i>the fail-fast behavior of iterators
* should be used only to detect bugs.</i>
*
* <p>This class is a member of the
* <a href="{@docRoot}/../technotes/guides/collections/index.html">
* Java Collections Framework</a>.
*
* @author Josh Bloch
* @see List
* @see ArrayList
* @since 1.2
* @param <E> the type of elements held in this collection
*/

public class LinkedList<E>
extends AbstractSequentialList<E>
implements List<E>, Deque<E>, Cloneable, java.io.Serializable
{
transient int size = 0;

/**
* Pointer to first node.
* Invariant: (first == null && last == null) ||
* (first.prev == null && first.item != null)
*/
transient Node<E> first;

/**
* Pointer to last node.
* Invariant: (first == null && last == null) ||
* (last.next == null && last.item != null)
*/
transient Node<E> last;

/**
* Constructs an empty list.
*/
public LinkedList() {
}

/**
* Constructs a list containing the elements of the specified
* collection, in the order they are returned by the collection's
* iterator.
*
* @param c the collection whose elements are to be placed into this list
* @throws NullPointerException if the specified collection is null
*/
public LinkedList(Collection<? extends E> c) {
this();
addAll(c);
}

/**
* Links e as first element.
*/
private void linkFirst(E e) {
final Node<E> f = first;
final Node<E> newNode = new Node<>(null, e, f);
first = newNode;
if (f == null)
last = newNode;
else
f.prev = newNode;
size++;
modCount++;
}

/**
* Links e as last element.
*/
void linkLast(E e) {
final Node<E> l = last;
final Node<E> newNode = new Node<>(l, e, null);
last = newNode;
if (l == null)
first = newNode;
else
l.next = newNode;
size++;
modCount++;
}

/**
* Inserts element e before non-null Node succ.
*/
void linkBefore(E e, Node<E> succ) {
// assert succ != null;
final Node<E> pred = succ.prev;
final Node<E> newNode = new Node<>(pred, e, succ);
succ.prev = newNode;
if (pred == null)
first = newNode;
else
pred.next = newNode;
size++;
modCount++;
}

/**
* Unlinks non-null first node f.
*/
private E unlinkFirst(Node<E> f) {
// assert f == first && f != null;
final E element = f.item;
final Node<E> next = f.next;
f.item = null;
f.next = null; // help GC
first = next;
if (next == null)
last = null;
else
next.prev = null;
size--;
modCount++;
return element;
}

/**
* Unlinks non-null last node l.
*/
private E unlinkLast(Node<E> l) {
// assert l == last && l != null;
final E element = l.item;
final Node<E> prev = l.prev;
l.item = null;
l.prev = null; // help GC
last = prev;
if (prev == null)
first = null;
else
prev.next = null;
size--;
modCount++;
return element;
}

/**
* Unlinks non-null node x.
*/
E unlink(Node<E> x) {
// assert x != null;
final E element = x.item;
final Node<E> next = x.next;
final Node<E> prev = x.prev;

if (prev == null) {
first = next;
} else {
prev.next = next;
x.prev = null;
}

if (next == null) {
last = prev;
} else {
next.prev = prev;
x.next = null;
}

x.item = null;
size--;
modCount++;
return element;
}

/**
* Returns the first element in this list.
*
* @return the first element in this list
* @throws NoSuchElementException if this list is empty
*/
public E getFirst() {
final Node<E> f = first;
if (f == null)
throw new NoSuchElementException();
return f.item;
}

/**
* Returns the last element in this list.
*
* @return the last element in this list
* @throws NoSuchElementException if this list is empty
*/
public E getLast() {
final Node<E> l = last;
if (l == null)
throw new NoSuchElementException();
return l.item;
}

/**
* Removes and returns the first element from this list.
*
* @return the first element from this list
* @throws NoSuchElementException if this list is empty
*/
public E removeFirst() {
final Node<E> f = first;
if (f == null)
throw new NoSuchElementException();
return unlinkFirst(f);
}

/**
* Removes and returns the last element from this list.
*
* @return the last element from this list
* @throws NoSuchElementException if this list is empty
*/
public E removeLast() {
final Node<E> l = last;
if (l == null)
throw new NoSuchElementException();
return unlinkLast(l);
}

/**
* Inserts the specified element at the beginning of this list.
*
* @param e the element to add
*/
public void addFirst(E e) {
linkFirst(e);
}

/**
* Appends the specified element to the end of this list.
*
* <p>This method is equivalent to {@link #add}.
*
* @param e the element to add
*/
public void addLast(E e) {
linkLast(e);
}

/**
* Returns {@code true} if this list contains the specified element.
* More formally, returns {@code true} if and only if this list contains
* at least one element {@code e} such that
* <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>.
*
* @param o element whose presence in this list is to be tested
* @return {@code true} if this list contains the specified element
*/
public boolean contains(Object o) {
return indexOf(o) != -1;
}

/**
* Returns the number of elements in this list.
*
* @return the number of elements in this list
*/
public int size() {
return size;
}

/**
* Appends the specified element to the end of this list.
*
* <p>This method is equivalent to {@link #addLast}.
*
* @param e element to be appended to this list
* @return {@code true} (as specified by {@link Collection#add})
*/
public boolean add(E e) {
linkLast(e);
return true;
}

/**
* Removes the first occurrence of the specified element from this list,
* if it is present. If this list does not contain the element, it is
* unchanged. More formally, removes the element with the lowest index
* {@code i} such that
* <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>
* (if such an element exists). Returns {@code true} if this list
* contained the specified element (or equivalently, if this list
* changed as a result of the call).
*
* @param o element to be removed from this list, if present
* @return {@code true} if this list contained the specified element
*/
public boolean remove(Object o) {
if (o == null) {
for (Node<E> x = first; x != null; x = x.next) {
if (x.item == null) {
unlink(x);
return true;
}
}
} else {
for (Node<E> x = first; x != null; x = x.next) {
if (o.equals(x.item)) {
unlink(x);
return true;
}
}
}
return false;
}

/**
* Appends all of the elements in the specified collection to the end of
* this list, in the order that they are returned by the specified
* collection's iterator. The behavior of this operation is undefined if
* the specified collection is modified while the operation is in
* progress. (Note that this will occur if the specified collection is
* this list, and it's nonempty.)
*
* @param c collection containing elements to be added to this list
* @return {@code true} if this list changed as a result of the call
* @throws NullPointerException if the specified collection is null
*/
public boolean addAll(Collection<? extends E> c) {
return addAll(size, c);
}

/**
* Inserts all of the elements in the specified collection into this
* list, starting at the specified position. Shifts the element
* currently at that position (if any) and any subsequent elements to
* the right (increases their indices). The new elements will appear
* in the list in the order that they are returned by the
* specified collection's iterator.
*
* @param index index at which to insert the first element
* from the specified collection
* @param c collection containing elements to be added to this list
* @return {@code true} if this list changed as a result of the call
* @throws IndexOutOfBoundsException {@inheritDoc}
* @throws NullPointerException if the specified collection is null
*/
public boolean addAll(int index, Collection<? extends E> c) {
checkPositionIndex(index);

Object[] a = c.toArray();
int numNew = a.length;
if (numNew == 0)
return false;

Node<E> pred, succ;
if (index == size) {
succ = null;
pred = last;
} else {
succ = node(index);
pred = succ.prev;
}

for (Object o : a) {
@SuppressWarnings("unchecked") E e = (E) o;
Node<E> newNode = new Node<>(pred, e, null);
if (pred == null)
first = newNode;
else
pred.next = newNode;
pred = newNode;
}

if (succ == null) {
last = pred;
} else {
pred.next = succ;
succ.prev = pred;
}

size += numNew;
modCount++;
return true;
}

/**
* Removes all of the elements from this list.
* The list will be empty after this call returns.
*/
public void clear() {
// Clearing all of the links between nodes is "unnecessary", but:
// - helps a generational GC if the discarded nodes inhabit
// more than one generation
// - is sure to free memory even if there is a reachable Iterator
for (Node<E> x = first; x != null; ) {
Node<E> next = x.next;
x.item = null;
x.next = null;
x.prev = null;
x = next;
}
first = last = null;
size = 0;
modCount++;
}


// Positional Access Operations

/**
* Returns the element at the specified position in this list.
*
* @param index index of the element to return
* @return the element at the specified position in this list
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public E get(int index) {
checkElementIndex(index);
return node(index).item;
}

/**
* Replaces the element at the specified position in this list with the
* specified element.
*
* @param index index of the element to replace
* @param element element to be stored at the specified position
* @return the element previously at the specified position
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public E set(int index, E element) {
checkElementIndex(index);
Node<E> x = node(index);
E oldVal = x.item;
x.item = element;
return oldVal;
}

/**
* Inserts the specified element at the specified position in this list.
* Shifts the element currently at that position (if any) and any
* subsequent elements to the right (adds one to their indices).
*
* @param index index at which the specified element is to be inserted
* @param element element to be inserted
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public void add(int index, E element) {
checkPositionIndex(index);

if (index == size)
linkLast(element);
else
linkBefore(element, node(index));
}

/**
* Removes the element at the specified position in this list. Shifts any
* subsequent elements to the left (subtracts one from their indices).
* Returns the element that was removed from the list.
*
* @param index the index of the element to be removed
* @return the element previously at the specified position
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public E remove(int index) {
checkElementIndex(index);
return unlink(node(index));
}

/**
* Tells if the argument is the index of an existing element.
*/
private boolean isElementIndex(int index) {
return index >= 0 && index < size;
}

/**
* Tells if the argument is the index of a valid position for an
* iterator or an add operation.
*/
private boolean isPositionIndex(int index) {
return index >= 0 && index <= size;
}

/**
* Constructs an IndexOutOfBoundsException detail message.
* Of the many possible refactorings of the error handling code,
* this "outlining" performs best with both server and client VMs.
*/
private String outOfBoundsMsg(int index) {
return "Index: "+index+", Size: "+size;
}

private void checkElementIndex(int index) {
if (!isElementIndex(index))
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}

private void checkPositionIndex(int index) {
if (!isPositionIndex(index))
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}

/**
* Returns the (non-null) Node at the specified element index.
*/
Node<E> node(int index) {
// assert isElementIndex(index);

if (index < (size >> 1)) {
Node<E> x = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else {
Node<E> x = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
}

// Search Operations

/**
* Returns the index of the first occurrence of the specified element
* in this list, or -1 if this list does not contain the element.
* More formally, returns the lowest index {@code i} such that
* <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
* or -1 if there is no such index.
*
* @param o element to search for
* @return the index of the first occurrence of the specified element in
* this list, or -1 if this list does not contain the element
*/
public int indexOf(Object o) {
int index = 0;
if (o == null) {
for (Node<E> x = first; x != null; x = x.next) {
if (x.item == null)
return index;
index++;
}
} else {
for (Node<E> x = first; x != null; x = x.next) {
if (o.equals(x.item))
return index;
index++;
}
}
return -1;
}

/**
* Returns the index of the last occurrence of the specified element
* in this list, or -1 if this list does not contain the element.
* More formally, returns the highest index {@code i} such that
* <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
* or -1 if there is no such index.
*
* @param o element to search for
* @return the index of the last occurrence of the specified element in
* this list, or -1 if this list does not contain the element
*/
public int lastIndexOf(Object o) {
int index = size;
if (o == null) {
for (Node<E> x = last; x != null; x = x.prev) {
index--;
if (x.item == null)
return index;
}
} else {
for (Node<E> x = last; x != null; x = x.prev) {
index--;
if (o.equals(x.item))
return index;
}
}
return -1;
}

// Queue operations.

/**
* Retrieves, but does not remove, the head (first element) of this list.
*
* @return the head of this list, or {@code null} if this list is empty
* @since 1.5
*/
public E peek() {
final Node<E> f = first;
return (f == null) ? null : f.item;
}

/**
* Retrieves, but does not remove, the head (first element) of this list.
*
* @return the head of this list
* @throws NoSuchElementException if this list is empty
* @since 1.5
*/
public E element() {
return getFirst();
}

/**
* Retrieves and removes the head (first element) of this list.
*
* @return the head of this list, or {@code null} if this list is empty
* @since 1.5
*/
public E poll() {
final Node<E> f = first;
return (f == null) ? null : unlinkFirst(f);
}

/**
* Retrieves and removes the head (first element) of this list.
*
* @return the head of this list
* @throws NoSuchElementException if this list is empty
* @since 1.5
*/
public E remove() {
return removeFirst();
}

/**
* Adds the specified element as the tail (last element) of this list.
*
* @param e the element to add
* @return {@code true} (as specified by {@link Queue#offer})
* @since 1.5
*/
public boolean offer(E e) {
return add(e);
}

// Deque operations
/**
* Inserts the specified element at the front of this list.
*
* @param e the element to insert
* @return {@code true} (as specified by {@link Deque#offerFirst})
* @since 1.6
*/
public boolean offerFirst(E e) {
addFirst(e);
return true;
}

/**
* Inserts the specified element at the end of this list.
*
* @param e the element to insert
* @return {@code true} (as specified by {@link Deque#offerLast})
* @since 1.6
*/
public boolean offerLast(E e) {
addLast(e);
return true;
}

/**
* Retrieves, but does not remove, the first element of this list,
* or returns {@code null} if this list is empty.
*
* @return the first element of this list, or {@code null}
* if this list is empty
* @since 1.6
*/
public E peekFirst() {
final Node<E> f = first;
return (f == null) ? null : f.item;
}

/**
* Retrieves, but does not remove, the last element of this list,
* or returns {@code null} if this list is empty.
*
* @return the last element of this list, or {@code null}
* if this list is empty
* @since 1.6
*/
public E peekLast() {
final Node<E> l = last;
return (l == null) ? null : l.item;
}

/**
* Retrieves and removes the first element of this list,
* or returns {@code null} if this list is empty.
*
* @return the first element of this list, or {@code null} if
* this list is empty
* @since 1.6
*/
public E pollFirst() {
final Node<E> f = first;
return (f == null) ? null : unlinkFirst(f);
}

/**
* Retrieves and removes the last element of this list,
* or returns {@code null} if this list is empty.
*
* @return the last element of this list, or {@code null} if
* this list is empty
* @since 1.6
*/
public E pollLast() {
final Node<E> l = last;
return (l == null) ? null : unlinkLast(l);
}

/**
* Pushes an element onto the stack represented by this list. In other
* words, inserts the element at the front of this list.
*
* <p>This method is equivalent to {@link #addFirst}.
*
* @param e the element to push
* @since 1.6
*/
public void push(E e) {
addFirst(e);
}

/**
* Pops an element from the stack represented by this list. In other
* words, removes and returns the first element of this list.
*
* <p>This method is equivalent to {@link #removeFirst()}.
*
* @return the element at the front of this list (which is the top
* of the stack represented by this list)
* @throws NoSuchElementException if this list is empty
* @since 1.6
*/
public E pop() {
return removeFirst();
}

/**
* Removes the first occurrence of the specified element in this
* list (when traversing the list from head to tail). If the list
* does not contain the element, it is unchanged.
*
* @param o element to be removed from this list, if present
* @return {@code true} if the list contained the specified element
* @since 1.6
*/
public boolean removeFirstOccurrence(Object o) {
return remove(o);
}

/**
* Removes the last occurrence of the specified element in this
* list (when traversing the list from head to tail). If the list
* does not contain the element, it is unchanged.
*
* @param o element to be removed from this list, if present
* @return {@code true} if the list contained the specified element
* @since 1.6
*/
public boolean removeLastOccurrence(Object o) {
if (o == null) {
for (Node<E> x = last; x != null; x = x.prev) {
if (x.item == null) {
unlink(x);
return true;
}
}
} else {
for (Node<E> x = last; x != null; x = x.prev) {
if (o.equals(x.item)) {
unlink(x);
return true;
}
}
}
return false;
}

/**
* Returns a list-iterator of the elements in this list (in proper
* sequence), starting at the specified position in the list.
* Obeys the general contract of {@code List.listIterator(int)}.<p>
*
* The list-iterator is <i>fail-fast</i>: if the list is structurally
* modified at any time after the Iterator is created, in any way except
* through the list-iterator's own {@code remove} or {@code add}
* methods, the list-iterator will throw a
* {@code ConcurrentModificationException}. Thus, in the face of
* concurrent modification, the iterator fails quickly and cleanly, rather
* than risking arbitrary, non-deterministic behavior at an undetermined
* time in the future.
*
* @param index index of the first element to be returned from the
* list-iterator (by a call to {@code next})
* @return a ListIterator of the elements in this list (in proper
* sequence), starting at the specified position in the list
* @throws IndexOutOfBoundsException {@inheritDoc}
* @see List#listIterator(int)
*/
public ListIterator<E> listIterator(int index) {
checkPositionIndex(index);
return new ListItr(index);
}

private class ListItr implements ListIterator<E> {
private Node<E> lastReturned;
private Node<E> next;
private int nextIndex;
private int expectedModCount = modCount;

ListItr(int index) {
// assert isPositionIndex(index);
next = (index == size) ? null : node(index);
nextIndex = index;
}

public boolean hasNext() {
return nextIndex < size;
}

public E next() {
checkForComodification();
if (!hasNext())
throw new NoSuchElementException();

lastReturned = next;
next = next.next;
nextIndex++;
return lastReturned.item;
}

public boolean hasPrevious() {
return nextIndex > 0;
}

public E previous() {
checkForComodification();
if (!hasPrevious())
throw new NoSuchElementException();

lastReturned = next = (next == null) ? last : next.prev;
nextIndex--;
return lastReturned.item;
}

public int nextIndex() {
return nextIndex;
}

public int previousIndex() {
return nextIndex - 1;
}

public void remove() {
checkForComodification();
if (lastReturned == null)
throw new IllegalStateException();

Node<E> lastNext = lastReturned.next;
unlink(lastReturned);
if (next == lastReturned)
next = lastNext;
else
nextIndex--;
lastReturned = null;
expectedModCount++;
}

public void set(E e) {
if (lastReturned == null)
throw new IllegalStateException();
checkForComodification();
lastReturned.item = e;
}

public void add(E e) {
checkForComodification();
lastReturned = null;
if (next == null)
linkLast(e);
else
linkBefore(e, next);
nextIndex++;
expectedModCount++;
}

public void forEachRemaining(Consumer<? super E> action) {
Objects.requireNonNull(action);
while (modCount == expectedModCount && nextIndex < size) {
action.accept(next.item);
lastReturned = next;
next = next.next;
nextIndex++;
}
checkForComodification();
}

final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}

private static class Node<E> {
E item;
Node<E> next;
Node<E> prev;

Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}

/**
* @since 1.6
*/
public Iterator<E> descendingIterator() {
return new DescendingIterator();
}

/**
* Adapter to provide descending iterators via ListItr.previous
*/
private class DescendingIterator implements Iterator<E> {
private final ListItr itr = new ListItr(size());
public boolean hasNext() {
return itr.hasPrevious();
}
public E next() {
return itr.previous();
}
public void remove() {
itr.remove();
}
}

@SuppressWarnings("unchecked")
private LinkedList<E> superClone() {
try {
return (LinkedList<E>) super.clone();
} catch (CloneNotSupportedException e) {
throw new InternalError(e);
}
}

/**
* Returns a shallow copy of this {@code LinkedList}. (The elements
* themselves are not cloned.)
*
* @return a shallow copy of this {@code LinkedList} instance
*/
public Object clone() {
LinkedList<E> clone = superClone();

// Put clone into "virgin" state
clone.first = clone.last = null;
clone.size = 0;
clone.modCount = 0;

// Initialize clone with our elements
for (Node<E> x = first; x != null; x = x.next)
clone.add(x.item);

return clone;
}

/**
* Returns an array containing all of the elements in this list
* in proper sequence (from first to last element).
*
* <p>The returned array will be "safe" in that no references to it are
* maintained by this list. (In other words, this method must allocate
* a new array). The caller is thus free to modify the returned array.
*
* <p>This method acts as bridge between array-based and collection-based
* APIs.
*
* @return an array containing all of the elements in this list
* in proper sequence
*/
public Object[] toArray() {
Object[] result = new Object[size];
int i = 0;
for (Node<E> x = first; x != null; x = x.next)
result[i++] = x.item;
return result;
}

/**
* Returns an array containing all of the elements in this list in
* proper sequence (from first to last element); the runtime type of
* the returned array is that of the specified array. If the list fits
* in the specified array, it is returned therein. Otherwise, a new
* array is allocated with the runtime type of the specified array and
* the size of this list.
*
* <p>If the list fits in the specified array with room to spare (i.e.,
* the array has more elements than the list), the element in the array
* immediately following the end of the list is set to {@code null}.
* (This is useful in determining the length of the list <i>only</i> if
* the caller knows that the list does not contain any null elements.)
*
* <p>Like the {@link #toArray()} method, this method acts as bridge between
* array-based and collection-based APIs. Further, this method allows
* precise control over the runtime type of the output array, and may,
* under certain circumstances, be used to save allocation costs.
*
* <p>Suppose {@code x} is a list known to contain only strings.
* The following code can be used to dump the list into a newly
* allocated array of {@code String}:
*
* <pre>
* String[] y = x.toArray(new String[0]);</pre>
*
* Note that {@code toArray(new Object[0])} is identical in function to
* {@code toArray()}.
*
* @param a the array into which the elements of the list are to
* be stored, if it is big enough; otherwise, a new array of the
* same runtime type is allocated for this purpose.
* @return an array containing the elements of the list
* @throws ArrayStoreException if the runtime type of the specified array
* is not a supertype of the runtime type of every element in
* this list
* @throws NullPointerException if the specified array is null
*/
@SuppressWarnings("unchecked")
public <T> T[] toArray(T[] a) {
if (a.length < size)
a = (T[])java.lang.reflect.Array.newInstance(
a.getClass().getComponentType(), size);
int i = 0;
Object[] result = a;
for (Node<E> x = first; x != null; x = x.next)
result[i++] = x.item;

if (a.length > size)
a[size] = null;

return a;
}

private static final long serialVersionUID = 876323262645176354L;

/**
* Saves the state of this {@code LinkedList} instance to a stream
* (that is, serializes it).
*
* @serialData The size of the list (the number of elements it
* contains) is emitted (int), followed by all of its
* elements (each an Object) in the proper order.
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
// Write out any hidden serialization magic
s.defaultWriteObject();

// Write out size
s.writeInt(size);

// Write out all elements in the proper order.
for (Node<E> x = first; x != null; x = x.next)
s.writeObject(x.item);
}

/**
* Reconstitutes this {@code LinkedList} instance from a stream
* (that is, deserializes it).
*/
@SuppressWarnings("unchecked")
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
// Read in any hidden serialization magic
s.defaultReadObject();

// Read in size
int size = s.readInt();

// Read in all elements in the proper order.
for (int i = 0; i < size; i++)
linkLast((E)s.readObject());
}

/**
* Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
* and <em>fail-fast</em> {@link Spliterator} over the elements in this
* list.
*
* <p>The {@code Spliterator} reports {@link Spliterator#SIZED} and
* {@link Spliterator#ORDERED}. Overriding implementations should document
* the reporting of additional characteristic values.
*
* @implNote
* The {@code Spliterator} additionally reports {@link Spliterator#SUBSIZED}
* and implements {@code trySplit} to permit limited parallelism..
*
* @return a {@code Spliterator} over the elements in this list
* @since 1.8
*/
@Override
public Spliterator<E> spliterator() {
return new LLSpliterator<E>(this, -1, 0);
}

/** A customized variant of Spliterators.IteratorSpliterator */
static final class LLSpliterator<E> implements Spliterator<E> {
static final int BATCH_UNIT = 1 << 10; // batch array size increment
static final int MAX_BATCH = 1 << 25; // max batch array size;
final LinkedList<E> list; // null OK unless traversed
Node<E> current; // current node; null until initialized
int est; // size estimate; -1 until first needed
int expectedModCount; // initialized when est set
int batch; // batch size for splits

LLSpliterator(LinkedList<E> list, int est, int expectedModCount) {
this.list = list;
this.est = est;
this.expectedModCount = expectedModCount;
}

final int getEst() {
int s; // force initialization
final LinkedList<E> lst;
if ((s = est) < 0) {
if ((lst = list) == null)
s = est = 0;
else {
expectedModCount = lst.modCount;
current = lst.first;
s = est = lst.size;
}
}
return s;
}

public long estimateSize() { return (long) getEst(); }

public Spliterator<E> trySplit() {
Node<E> p;
int s = getEst();
if (s > 1 && (p = current) != null) {
int n = batch + BATCH_UNIT;
if (n > s)
n = s;
if (n > MAX_BATCH)
n = MAX_BATCH;
Object[] a = new Object[n];
int j = 0;
do { a[j++] = p.item; } while ((p = p.next) != null && j < n);
current = p;
batch = j;
est = s - j;
return Spliterators.spliterator(a, 0, j, Spliterator.ORDERED);
}
return null;
}

public void forEachRemaining(Consumer<? super E> action) {
Node<E> p; int n;
if (action == null) throw new NullPointerException();
if ((n = getEst()) > 0 && (p = current) != null) {
current = null;
est = 0;
do {
E e = p.item;
p = p.next;
action.accept(e);
} while (p != null && --n > 0);
}
if (list.modCount != expectedModCount)
throw new ConcurrentModificationException();
}

public boolean tryAdvance(Consumer<? super E> action) {
Node<E> p;
if (action == null) throw new NullPointerException();
if (getEst() > 0 && (p = current) != null) {
--est;
E e = p.item;
current = p.next;
action.accept(e);
if (list.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}
return false;
}

public int characteristics() {
return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
}
}

}

HashMap类

HashMap类

image.png

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
/*
* Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
* ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*/

package java.util;

import java.io.IOException;
import java.io.InvalidObjectException;
import java.io.Serializable;
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import java.util.function.BiConsumer;
import java.util.function.BiFunction;
import java.util.function.Consumer;
import java.util.function.Function;
import sun.misc.SharedSecrets;

/**
* Hash table based implementation of the <tt>Map</tt> interface. This
* implementation provides all of the optional map operations, and permits
* <tt>null</tt> values and the <tt>null</tt> key. (The <tt>HashMap</tt>
* class is roughly equivalent to <tt>Hashtable</tt>, except that it is
* unsynchronized and permits nulls.) This class makes no guarantees as to
* the order of the map; in particular, it does not guarantee that the order
* will remain constant over time.
*
* <p>This implementation provides constant-time performance for the basic
* operations (<tt>get</tt> and <tt>put</tt>), assuming the hash function
* disperses the elements properly among the buckets. Iteration over
* collection views requires time proportional to the "capacity" of the
* <tt>HashMap</tt> instance (the number of buckets) plus its size (the number
* of key-value mappings). Thus, it's very important not to set the initial
* capacity too high (or the load factor too low) if iteration performance is
* important.
*
* <p>An instance of <tt>HashMap</tt> has two parameters that affect its
* performance: <i>initial capacity</i> and <i>load factor</i>. The
* <i>capacity</i> is the number of buckets in the hash table, and the initial
* capacity is simply the capacity at the time the hash table is created. The
* <i>load factor</i> is a measure of how full the hash table is allowed to
* get before its capacity is automatically increased. When the number of
* entries in the hash table exceeds the product of the load factor and the
* current capacity, the hash table is <i>rehashed</i> (that is, internal data
* structures are rebuilt) so that the hash table has approximately twice the
* number of buckets.
*
* <p>As a general rule, the default load factor (.75) offers a good
* tradeoff between time and space costs. Higher values decrease the
* space overhead but increase the lookup cost (reflected in most of
* the operations of the <tt>HashMap</tt> class, including
* <tt>get</tt> and <tt>put</tt>). The expected number of entries in
* the map and its load factor should be taken into account when
* setting its initial capacity, so as to minimize the number of
* rehash operations. If the initial capacity is greater than the
* maximum number of entries divided by the load factor, no rehash
* operations will ever occur.
*
* <p>If many mappings are to be stored in a <tt>HashMap</tt>
* instance, creating it with a sufficiently large capacity will allow
* the mappings to be stored more efficiently than letting it perform
* automatic rehashing as needed to grow the table. Note that using
* many keys with the same {@code hashCode()} is a sure way to slow
* down performance of any hash table. To ameliorate impact, when keys
* are {@link Comparable}, this class may use comparison order among
* keys to help break ties.
*
* <p><strong>Note that this implementation is not synchronized.</strong>
* If multiple threads access a hash map concurrently, and at least one of
* the threads modifies the map structurally, it <i>must</i> be
* synchronized externally. (A structural modification is any operation
* that adds or deletes one or more mappings; merely changing the value
* associated with a key that an instance already contains is not a
* structural modification.) This is typically accomplished by
* synchronizing on some object that naturally encapsulates the map.
*
* If no such object exists, the map should be "wrapped" using the
* {@link Collections#synchronizedMap Collections.synchronizedMap}
* method. This is best done at creation time, to prevent accidental
* unsynchronized access to the map:<pre>
* Map m = Collections.synchronizedMap(new HashMap(...));</pre>
*
* <p>The iterators returned by all of this class's "collection view methods"
* are <i>fail-fast</i>: if the map is structurally modified at any time after
* the iterator is created, in any way except through the iterator's own
* <tt>remove</tt> method, the iterator will throw a
* {@link ConcurrentModificationException}. Thus, in the face of concurrent
* modification, the iterator fails quickly and cleanly, rather than risking
* arbitrary, non-deterministic behavior at an undetermined time in the
* future.
*
* <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
* as it is, generally speaking, impossible to make any hard guarantees in the
* presence of unsynchronized concurrent modification. Fail-fast iterators
* throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
* Therefore, it would be wrong to write a program that depended on this
* exception for its correctness: <i>the fail-fast behavior of iterators
* should be used only to detect bugs.</i>
*
* <p>This class is a member of the
* <a href="{@docRoot}/../technotes/guides/collections/index.html">
* Java Collections Framework</a>.
*
* @param <K> the type of keys maintained by this map
* @param <V> the type of mapped values
*
* @author Doug Lea
* @author Josh Bloch
* @author Arthur van Hoff
* @author Neal Gafter
* @see Object#hashCode()
* @see Collection
* @see Map
* @see TreeMap
* @see Hashtable
* @since 1.2
*/
public class HashMap<K,V> extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable {

private static final long serialVersionUID = 362498820763181265L;

/*
* Implementation notes.
*
* This map usually acts as a binned (bucketed) hash table, but
* when bins get too large, they are transformed into bins of
* TreeNodes, each structured similarly to those in
* java.util.TreeMap. Most methods try to use normal bins, but
* relay to TreeNode methods when applicable (simply by checking
* instanceof a node). Bins of TreeNodes may be traversed and
* used like any others, but additionally support faster lookup
* when overpopulated. However, since the vast majority of bins in
* normal use are not overpopulated, checking for existence of
* tree bins may be delayed in the course of table methods.
*
* Tree bins (i.e., bins whose elements are all TreeNodes) are
* ordered primarily by hashCode, but in the case of ties, if two
* elements are of the same "class C implements Comparable<C>",
* type then their compareTo method is used for ordering. (We
* conservatively check generic types via reflection to validate
* this -- see method comparableClassFor). The added complexity
* of tree bins is worthwhile in providing worst-case O(log n)
* operations when keys either have distinct hashes or are
* orderable, Thus, performance degrades gracefully under
* accidental or malicious usages in which hashCode() methods
* return values that are poorly distributed, as well as those in
* which many keys share a hashCode, so long as they are also
* Comparable. (If neither of these apply, we may waste about a
* factor of two in time and space compared to taking no
* precautions. But the only known cases stem from poor user
* programming practices that are already so slow that this makes
* little difference.)
*
* Because TreeNodes are about twice the size of regular nodes, we
* use them only when bins contain enough nodes to warrant use
* (see TREEIFY_THRESHOLD). And when they become too small (due to
* removal or resizing) they are converted back to plain bins. In
* usages with well-distributed user hashCodes, tree bins are
* rarely used. Ideally, under random hashCodes, the frequency of
* nodes in bins follows a Poisson distribution
* (http://en.wikipedia.org/wiki/Poisson_distribution) with a
* parameter of about 0.5 on average for the default resizing
* threshold of 0.75, although with a large variance because of
* resizing granularity. Ignoring variance, the expected
* occurrences of list size k are (exp(-0.5) * pow(0.5, k) /
* factorial(k)). The first values are:
*
* 0: 0.60653066
* 1: 0.30326533
* 2: 0.07581633
* 3: 0.01263606
* 4: 0.00157952
* 5: 0.00015795
* 6: 0.00001316
* 7: 0.00000094
* 8: 0.00000006
* more: less than 1 in ten million
*
* The root of a tree bin is normally its first node. However,
* sometimes (currently only upon Iterator.remove), the root might
* be elsewhere, but can be recovered following parent links
* (method TreeNode.root()).
*
* All applicable internal methods accept a hash code as an
* argument (as normally supplied from a public method), allowing
* them to call each other without recomputing user hashCodes.
* Most internal methods also accept a "tab" argument, that is
* normally the current table, but may be a new or old one when
* resizing or converting.
*
* When bin lists are treeified, split, or untreeified, we keep
* them in the same relative access/traversal order (i.e., field
* Node.next) to better preserve locality, and to slightly
* simplify handling of splits and traversals that invoke
* iterator.remove. When using comparators on insertion, to keep a
* total ordering (or as close as is required here) across
* rebalancings, we compare classes and identityHashCodes as
* tie-breakers.
*
* The use and transitions among plain vs tree modes is
* complicated by the existence of subclass LinkedHashMap. See
* below for hook methods defined to be invoked upon insertion,
* removal and access that allow LinkedHashMap internals to
* otherwise remain independent of these mechanics. (This also
* requires that a map instance be passed to some utility methods
* that may create new nodes.)
*
* The concurrent-programming-like SSA-based coding style helps
* avoid aliasing errors amid all of the twisty pointer operations.
*/

/**
* The default initial capacity - MUST be a power of two.
*/
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

/**
* The maximum capacity, used if a higher value is implicitly specified
* by either of the constructors with arguments.
* MUST be a power of two <= 1<<30.
*/
static final int MAXIMUM_CAPACITY = 1 << 30;

/**
* The load factor used when none specified in constructor.
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;

/**
* The bin count threshold for using a tree rather than list for a
* bin. Bins are converted to trees when adding an element to a
* bin with at least this many nodes. The value must be greater
* than 2 and should be at least 8 to mesh with assumptions in
* tree removal about conversion back to plain bins upon
* shrinkage.
*/
static final int TREEIFY_THRESHOLD = 8;

/**
* The bin count threshold for untreeifying a (split) bin during a
* resize operation. Should be less than TREEIFY_THRESHOLD, and at
* most 6 to mesh with shrinkage detection under removal.
*/
static final int UNTREEIFY_THRESHOLD = 6;

/**
* The smallest table capacity for which bins may be treeified.
* (Otherwise the table is resized if too many nodes in a bin.)
* Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
* between resizing and treeification thresholds.
*/
static final int MIN_TREEIFY_CAPACITY = 64;

/**
* Basic hash bin node, used for most entries. (See below for
* TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
*/
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;

Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}

public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }

public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}

public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}

public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}

/* ---------------- Static utilities -------------- */

/**
* Computes key.hashCode() and spreads (XORs) higher bits of hash
* to lower. Because the table uses power-of-two masking, sets of
* hashes that vary only in bits above the current mask will
* always collide. (Among known examples are sets of Float keys
* holding consecutive whole numbers in small tables.) So we
* apply a transform that spreads the impact of higher bits
* downward. There is a tradeoff between speed, utility, and
* quality of bit-spreading. Because many common sets of hashes
* are already reasonably distributed (so don't benefit from
* spreading), and because we use trees to handle large sets of
* collisions in bins, we just XOR some shifted bits in the
* cheapest possible way to reduce systematic lossage, as well as
* to incorporate impact of the highest bits that would otherwise
* never be used in index calculations because of table bounds.
*/
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

/**
* Returns x's Class if it is of the form "class C implements
* Comparable<C>", else null.
*/
static Class<?> comparableClassFor(Object x) {
if (x instanceof Comparable) {
Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
if ((c = x.getClass()) == String.class) // bypass checks
return c;
if ((ts = c.getGenericInterfaces()) != null) {
for (int i = 0; i < ts.length; ++i) {
if (((t = ts[i]) instanceof ParameterizedType) &&
((p = (ParameterizedType)t).getRawType() ==
Comparable.class) &&
(as = p.getActualTypeArguments()) != null &&
as.length == 1 && as[0] == c) // type arg is c
return c;
}
}
}
return null;
}

/**
* Returns k.compareTo(x) if x matches kc (k's screened comparable
* class), else 0.
*/
@SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
static int compareComparables(Class<?> kc, Object k, Object x) {
return (x == null || x.getClass() != kc ? 0 :
((Comparable)k).compareTo(x));
}

/**
* Returns a power of two size for the given target capacity.
*/
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

/* ---------------- Fields -------------- */

/**
* The table, initialized on first use, and resized as
* necessary. When allocated, length is always a power of two.
* (We also tolerate length zero in some operations to allow
* bootstrapping mechanics that are currently not needed.)
*/
transient Node<K,V>[] table;

/**
* Holds cached entrySet(). Note that AbstractMap fields are used
* for keySet() and values().
*/
transient Set<Map.Entry<K,V>> entrySet;

/**
* The number of key-value mappings contained in this map.
*/
transient int size;

/**
* The number of times this HashMap has been structurally modified
* Structural modifications are those that change the number of mappings in
* the HashMap or otherwise modify its internal structure (e.g.,
* rehash). This field is used to make iterators on Collection-views of
* the HashMap fail-fast. (See ConcurrentModificationException).
*/
transient int modCount;

/**
* The next size value at which to resize (capacity * load factor).
*
* @serial
*/
// (The javadoc description is true upon serialization.
// Additionally, if the table array has not been allocated, this
// field holds the initial array capacity, or zero signifying
// DEFAULT_INITIAL_CAPACITY.)
int threshold;

/**
* The load factor for the hash table.
*
* @serial
*/
final float loadFactor;

/* ---------------- Public operations -------------- */

/**
* Constructs an empty <tt>HashMap</tt> with the specified initial
* capacity and load factor.
*
* @param initialCapacity the initial capacity
* @param loadFactor the load factor
* @throws IllegalArgumentException if the initial capacity is negative
* or the load factor is nonpositive
*/
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);
}

/**
* Constructs an empty <tt>HashMap</tt> with the specified initial
* capacity and the default load factor (0.75).
*
* @param initialCapacity the initial capacity.
* @throws IllegalArgumentException if the initial capacity is negative.
*/
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

/**
* Constructs an empty <tt>HashMap</tt> with the default initial capacity
* (16) and the default load factor (0.75).
*/
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}

/**
* Constructs a new <tt>HashMap</tt> with the same mappings as the
* specified <tt>Map</tt>. The <tt>HashMap</tt> is created with
* default load factor (0.75) and an initial capacity sufficient to
* hold the mappings in the specified <tt>Map</tt>.
*
* @param m the map whose mappings are to be placed in this map
* @throws NullPointerException if the specified map is null
*/
public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}

/**
* Implements Map.putAll and Map constructor
*
* @param m the map
* @param evict false when initially constructing this map, else
* true (relayed to method afterNodeInsertion).
*/
final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
int s = m.size();
if (s > 0) {
if (table == null) { // pre-size
float ft = ((float)s / loadFactor) + 1.0F;
int t = ((ft < (float)MAXIMUM_CAPACITY) ?
(int)ft : MAXIMUM_CAPACITY);
if (t > threshold)
threshold = tableSizeFor(t);
}
else if (s > threshold)
resize();
for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
K key = e.getKey();
V value = e.getValue();
putVal(hash(key), key, value, false, evict);
}
}
}

/**
* Returns the number of key-value mappings in this map.
*
* @return the number of key-value mappings in this map
*/
public int size() {
return size;
}

/**
* Returns <tt>true</tt> if this map contains no key-value mappings.
*
* @return <tt>true</tt> if this map contains no key-value mappings
*/
public boolean isEmpty() {
return size == 0;
}

/**
* Returns the value to which the specified key is mapped,
* or {@code null} if this map contains no mapping for the key.
*
* <p>More formally, if this map contains a mapping from a key
* {@code k} to a value {@code v} such that {@code (key==null ? k==null :
* key.equals(k))}, then this method returns {@code v}; otherwise
* it returns {@code null}. (There can be at most one such mapping.)
*
* <p>A return value of {@code null} does not <i>necessarily</i>
* indicate that the map contains no mapping for the key; it's also
* possible that the map explicitly maps the key to {@code null}.
* The {@link #containsKey containsKey} operation may be used to
* distinguish these two cases.
*
* @see #put(Object, Object)
*/
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}

/**
* Implements Map.get and related methods
*
* @param hash hash for key
* @param key the key
* @return the node, or null if none
*/
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}

/**
* Returns <tt>true</tt> if this map contains a mapping for the
* specified key.
*
* @param key The key whose presence in this map is to be tested
* @return <tt>true</tt> if this map contains a mapping for the specified
* key.
*/
public boolean containsKey(Object key) {
return getNode(hash(key), key) != null;
}

/**
* Associates the specified value with the specified key in this map.
* If the map previously contained a mapping for the key, the old
* value is replaced.
*
* @param key key with which the specified value is to be associated
* @param value value to be associated with the specified key
* @return the previous value associated with <tt>key</tt>, or
* <tt>null</tt> if there was no mapping for <tt>key</tt>.
* (A <tt>null</tt> return can also indicate that the map
* previously associated <tt>null</tt> with <tt>key</tt>.)
*/
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}

/**
* Implements Map.put and related methods
*
* @param hash hash for key
* @param key the key
* @param value the value to put
* @param onlyIfAbsent if true, don't change existing value
* @param evict if false, the table is in creation mode.
* @return previous value, or null if none
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}

/**
* Initializes or doubles table size. If null, allocates in
* accord with initial capacity target held in field threshold.
* Otherwise, because we are using power-of-two expansion, the
* elements from each bin must either stay at same index, or move
* with a power of two offset in the new table.
*
* @return the table
*/
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}

/**
* Replaces all linked nodes in bin at index for given hash unless
* table is too small, in which case resizes instead.
*/
final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {
TreeNode<K,V> hd = null, tl = null;
do {
TreeNode<K,V> p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else {
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
if ((tab[index] = hd) != null)
hd.treeify(tab);
}
}

/**
* Copies all of the mappings from the specified map to this map.
* These mappings will replace any mappings that this map had for
* any of the keys currently in the specified map.
*
* @param m mappings to be stored in this map
* @throws NullPointerException if the specified map is null
*/
public void putAll(Map<? extends K, ? extends V> m) {
putMapEntries(m, true);
}

/**
* Removes the mapping for the specified key from this map if present.
*
* @param key key whose mapping is to be removed from the map
* @return the previous value associated with <tt>key</tt>, or
* <tt>null</tt> if there was no mapping for <tt>key</tt>.
* (A <tt>null</tt> return can also indicate that the map
* previously associated <tt>null</tt> with <tt>key</tt>.)
*/
public V remove(Object key) {
Node<K,V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ?
null : e.value;
}

/**
* Implements Map.remove and related methods
*
* @param hash hash for key
* @param key the key
* @param value the value to match if matchValue, else ignored
* @param matchValue if true only remove if value is equal
* @param movable if false do not move other nodes while removing
* @return the node, or null if none
*/
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) {
if (p instanceof TreeNode)
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode)
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
else if (node == p)
tab[index] = node.next;
else
p.next = node.next;
++modCount;
--size;
afterNodeRemoval(node);
return node;
}
}
return null;
}

/**
* Removes all of the mappings from this map.
* The map will be empty after this call returns.
*/
public void clear() {
Node<K,V>[] tab;
modCount++;
if ((tab = table) != null && size > 0) {
size = 0;
for (int i = 0; i < tab.length; ++i)
tab[i] = null;
}
}

/**
* Returns <tt>true</tt> if this map maps one or more keys to the
* specified value.
*
* @param value value whose presence in this map is to be tested
* @return <tt>true</tt> if this map maps one or more keys to the
* specified value
*/
public boolean containsValue(Object value) {
Node<K,V>[] tab; V v;
if ((tab = table) != null && size > 0) {
for (int i = 0; i < tab.length; ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next) {
if ((v = e.value) == value ||
(value != null && value.equals(v)))
return true;
}
}
}
return false;
}

/**
* Returns a {@link Set} view of the keys contained in this map.
* The set is backed by the map, so changes to the map are
* reflected in the set, and vice-versa. If the map is modified
* while an iteration over the set is in progress (except through
* the iterator's own <tt>remove</tt> operation), the results of
* the iteration are undefined. The set supports element removal,
* which removes the corresponding mapping from the map, via the
* <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
* <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
* operations. It does not support the <tt>add</tt> or <tt>addAll</tt>
* operations.
*
* @return a set view of the keys contained in this map
*/
public Set<K> keySet() {
Set<K> ks = keySet;
if (ks == null) {
ks = new KeySet();
keySet = ks;
}
return ks;
}

final class KeySet extends AbstractSet<K> {
public final int size() { return size; }
public final void clear() { HashMap.this.clear(); }
public final Iterator<K> iterator() { return new KeyIterator(); }
public final boolean contains(Object o) { return containsKey(o); }
public final boolean remove(Object key) {
return removeNode(hash(key), key, null, false, true) != null;
}
public final Spliterator<K> spliterator() {
return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
}
public final void forEach(Consumer<? super K> action) {
Node<K,V>[] tab;
if (action == null)
throw new NullPointerException();
if (size > 0 && (tab = table) != null) {
int mc = modCount;
for (int i = 0; i < tab.length; ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next)
action.accept(e.key);
}
if (modCount != mc)
throw new ConcurrentModificationException();
}
}
}

/**
* Returns a {@link Collection} view of the values contained in this map.
* The collection is backed by the map, so changes to the map are
* reflected in the collection, and vice-versa. If the map is
* modified while an iteration over the collection is in progress
* (except through the iterator's own <tt>remove</tt> operation),
* the results of the iteration are undefined. The collection
* supports element removal, which removes the corresponding
* mapping from the map, via the <tt>Iterator.remove</tt>,
* <tt>Collection.remove</tt>, <tt>removeAll</tt>,
* <tt>retainAll</tt> and <tt>clear</tt> operations. It does not
* support the <tt>add</tt> or <tt>addAll</tt> operations.
*
* @return a view of the values contained in this map
*/
public Collection<V> values() {
Collection<V> vs = values;
if (vs == null) {
vs = new Values();
values = vs;
}
return vs;
}

final class Values extends AbstractCollection<V> {
public final int size() { return size; }
public final void clear() { HashMap.this.clear(); }
public final Iterator<V> iterator() { return new ValueIterator(); }
public final boolean contains(Object o) { return containsValue(o); }
public final Spliterator<V> spliterator() {
return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
}
public final void forEach(Consumer<? super V> action) {
Node<K,V>[] tab;
if (action == null)
throw new NullPointerException();
if (size > 0 && (tab = table) != null) {
int mc = modCount;
for (int i = 0; i < tab.length; ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next)
action.accept(e.value);
}
if (modCount != mc)
throw new ConcurrentModificationException();
}
}
}

/**
* Returns a {@link Set} view of the mappings contained in this map.
* The set is backed by the map, so changes to the map are
* reflected in the set, and vice-versa. If the map is modified
* while an iteration over the set is in progress (except through
* the iterator's own <tt>remove</tt> operation, or through the
* <tt>setValue</tt> operation on a map entry returned by the
* iterator) the results of the iteration are undefined. The set
* supports element removal, which removes the corresponding
* mapping from the map, via the <tt>Iterator.remove</tt>,
* <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
* <tt>clear</tt> operations. It does not support the
* <tt>add</tt> or <tt>addAll</tt> operations.
*
* @return a set view of the mappings contained in this map
*/
public Set<Map.Entry<K,V>> entrySet() {
Set<Map.Entry<K,V>> es;
return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
}

final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
public final int size() { return size; }
public final void clear() { HashMap.this.clear(); }
public final Iterator<Map.Entry<K,V>> iterator() {
return new EntryIterator();
}
public final boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?,?> e = (Map.Entry<?,?>) o;
Object key = e.getKey();
Node<K,V> candidate = getNode(hash(key), key);
return candidate != null && candidate.equals(e);
}
public final boolean remove(Object o) {
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>) o;
Object key = e.getKey();
Object value = e.getValue();
return removeNode(hash(key), key, value, true, true) != null;
}
return false;
}
public final Spliterator<Map.Entry<K,V>> spliterator() {
return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
}
public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
Node<K,V>[] tab;
if (action == null)
throw new NullPointerException();
if (size > 0 && (tab = table) != null) {
int mc = modCount;
for (int i = 0; i < tab.length; ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next)
action.accept(e);
}
if (modCount != mc)
throw new ConcurrentModificationException();
}
}
}

// Overrides of JDK8 Map extension methods

@Override
public V getOrDefault(Object key, V defaultValue) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
}

@Override
public V putIfAbsent(K key, V value) {
return putVal(hash(key), key, value, true, true);
}

@Override
public boolean remove(Object key, Object value) {
return removeNode(hash(key), key, value, true, true) != null;
}

@Override
public boolean replace(K key, V oldValue, V newValue) {
Node<K,V> e; V v;
if ((e = getNode(hash(key), key)) != null &&
((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
e.value = newValue;
afterNodeAccess(e);
return true;
}
return false;
}

@Override
public V replace(K key, V value) {
Node<K,V> e;
if ((e = getNode(hash(key), key)) != null) {
V oldValue = e.value;
e.value = value;
afterNodeAccess(e);
return oldValue;
}
return null;
}

@Override
public V computeIfAbsent(K key,
Function<? super K, ? extends V> mappingFunction) {
if (mappingFunction == null)
throw new NullPointerException();
int hash = hash(key);
Node<K,V>[] tab; Node<K,V> first; int n, i;
int binCount = 0;
TreeNode<K,V> t = null;
Node<K,V> old = null;
if (size > threshold || (tab = table) == null ||
(n = tab.length) == 0)
n = (tab = resize()).length;
if ((first = tab[i = (n - 1) & hash]) != null) {
if (first instanceof TreeNode)
old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
else {
Node<K,V> e = first; K k;
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) {
old = e;
break;
}
++binCount;
} while ((e = e.next) != null);
}
V oldValue;
if (old != null && (oldValue = old.value) != null) {
afterNodeAccess(old);
return oldValue;
}
}
V v = mappingFunction.apply(key);
if (v == null) {
return null;
} else if (old != null) {
old.value = v;
afterNodeAccess(old);
return v;
}
else if (t != null)
t.putTreeVal(this, tab, hash, key, v);
else {
tab[i] = newNode(hash, key, v, first);
if (binCount >= TREEIFY_THRESHOLD - 1)
treeifyBin(tab, hash);
}
++modCount;
++size;
afterNodeInsertion(true);
return v;
}

public V computeIfPresent(K key,
BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
if (remappingFunction == null)
throw new NullPointerException();
Node<K,V> e; V oldValue;
int hash = hash(key);
if ((e = getNode(hash, key)) != null &&
(oldValue = e.value) != null) {
V v = remappingFunction.apply(key, oldValue);
if (v != null) {
e.value = v;
afterNodeAccess(e);
return v;
}
else
removeNode(hash, key, null, false, true);
}
return null;
}

@Override
public V compute(K key,
BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
if (remappingFunction == null)
throw new NullPointerException();
int hash = hash(key);
Node<K,V>[] tab; Node<K,V> first; int n, i;
int binCount = 0;
TreeNode<K,V> t = null;
Node<K,V> old = null;
if (size > threshold || (tab = table) == null ||
(n = tab.length) == 0)
n = (tab = resize()).length;
if ((first = tab[i = (n - 1) & hash]) != null) {
if (first instanceof TreeNode)
old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
else {
Node<K,V> e = first; K k;
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) {
old = e;
break;
}
++binCount;
} while ((e = e.next) != null);
}
}
V oldValue = (old == null) ? null : old.value;
V v = remappingFunction.apply(key, oldValue);
if (old != null) {
if (v != null) {
old.value = v;
afterNodeAccess(old);
}
else
removeNode(hash, key, null, false, true);
}
else if (v != null) {
if (t != null)
t.putTreeVal(this, tab, hash, key, v);
else {
tab[i] = newNode(hash, key, v, first);
if (binCount >= TREEIFY_THRESHOLD - 1)
treeifyBin(tab, hash);
}
++modCount;
++size;
afterNodeInsertion(true);
}
return v;
}

@Override
public V merge(K key, V value,
BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
if (value == null)
throw new NullPointerException();
if (remappingFunction == null)
throw new NullPointerException();
int hash = hash(key);
Node<K,V>[] tab; Node<K,V> first; int n, i;
int binCount = 0;
TreeNode<K,V> t = null;
Node<K,V> old = null;
if (size > threshold || (tab = table) == null ||
(n = tab.length) == 0)
n = (tab = resize()).length;
if ((first = tab[i = (n - 1) & hash]) != null) {
if (first instanceof TreeNode)
old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
else {
Node<K,V> e = first; K k;
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) {
old = e;
break;
}
++binCount;
} while ((e = e.next) != null);
}
}
if (old != null) {
V v;
if (old.value != null)
v = remappingFunction.apply(old.value, value);
else
v = value;
if (v != null) {
old.value = v;
afterNodeAccess(old);
}
else
removeNode(hash, key, null, false, true);
return v;
}
if (value != null) {
if (t != null)
t.putTreeVal(this, tab, hash, key, value);
else {
tab[i] = newNode(hash, key, value, first);
if (binCount >= TREEIFY_THRESHOLD - 1)
treeifyBin(tab, hash);
}
++modCount;
++size;
afterNodeInsertion(true);
}
return value;
}

@Override
public void forEach(BiConsumer<? super K, ? super V> action) {
Node<K,V>[] tab;
if (action == null)
throw new NullPointerException();
if (size > 0 && (tab = table) != null) {
int mc = modCount;
for (int i = 0; i < tab.length; ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next)
action.accept(e.key, e.value);
}
if (modCount != mc)
throw new ConcurrentModificationException();
}
}

@Override
public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
Node<K,V>[] tab;
if (function == null)
throw new NullPointerException();
if (size > 0 && (tab = table) != null) {
int mc = modCount;
for (int i = 0; i < tab.length; ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next) {
e.value = function.apply(e.key, e.value);
}
}
if (modCount != mc)
throw new ConcurrentModificationException();
}
}

/* ------------------------------------------------------------ */
// Cloning and serialization

/**
* Returns a shallow copy of this <tt>HashMap</tt> instance: the keys and
* values themselves are not cloned.
*
* @return a shallow copy of this map
*/
@SuppressWarnings("unchecked")
@Override
public Object clone() {
HashMap<K,V> result;
try {
result = (HashMap<K,V>)super.clone();
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError(e);
}
result.reinitialize();
result.putMapEntries(this, false);
return result;
}

// These methods are also used when serializing HashSets
final float loadFactor() { return loadFactor; }
final int capacity() {
return (table != null) ? table.length :
(threshold > 0) ? threshold :
DEFAULT_INITIAL_CAPACITY;
}

/**
* Save the state of the <tt>HashMap</tt> instance to a stream (i.e.,
* serialize it).
*
* @serialData The <i>capacity</i> of the HashMap (the length of the
* bucket array) is emitted (int), followed by the
* <i>size</i> (an int, the number of key-value
* mappings), followed by the key (Object) and value (Object)
* for each key-value mapping. The key-value mappings are
* emitted in no particular order.
*/
private void writeObject(java.io.ObjectOutputStream s)
throws IOException {
int buckets = capacity();
// Write out the threshold, loadfactor, and any hidden stuff
s.defaultWriteObject();
s.writeInt(buckets);
s.writeInt(size);
internalWriteEntries(s);
}

/**
* Reconstitute the {@code HashMap} instance from a stream (i.e.,
* deserialize it).
*/
private void readObject(java.io.ObjectInputStream s)
throws IOException, ClassNotFoundException {
// Read in the threshold (ignored), loadfactor, and any hidden stuff
s.defaultReadObject();
reinitialize();
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new InvalidObjectException("Illegal load factor: " +
loadFactor);
s.readInt(); // Read and ignore number of buckets
int mappings = s.readInt(); // Read number of mappings (size)
if (mappings < 0)
throw new InvalidObjectException("Illegal mappings count: " +
mappings);
else if (mappings > 0) { // (if zero, use defaults)
// Size the table using given load factor only if within
// range of 0.25...4.0
float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f);
float fc = (float)mappings / lf + 1.0f;
int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ?
DEFAULT_INITIAL_CAPACITY :
(fc >= MAXIMUM_CAPACITY) ?
MAXIMUM_CAPACITY :
tableSizeFor((int)fc));
float ft = (float)cap * lf;
threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ?
(int)ft : Integer.MAX_VALUE);

// Check Map.Entry[].class since it's the nearest public type to
// what we're actually creating.
SharedSecrets.getJavaOISAccess().checkArray(s, Map.Entry[].class, cap);
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] tab = (Node<K,V>[])new Node[cap];
table = tab;

// Read the keys and values, and put the mappings in the HashMap
for (int i = 0; i < mappings; i++) {
@SuppressWarnings("unchecked")
K key = (K) s.readObject();
@SuppressWarnings("unchecked")
V value = (V) s.readObject();
putVal(hash(key), key, value, false, false);
}
}
}

/* ------------------------------------------------------------ */
// iterators

abstract class HashIterator {
Node<K,V> next; // next entry to return
Node<K,V> current; // current entry
int expectedModCount; // for fast-fail
int index; // current slot

HashIterator() {
expectedModCount = modCount;
Node<K,V>[] t = table;
current = next = null;
index = 0;
if (t != null && size > 0) { // advance to first entry
do {} while (index < t.length && (next = t[index++]) == null);
}
}

public final boolean hasNext() {
return next != null;
}

final Node<K,V> nextNode() {
Node<K,V>[] t;
Node<K,V> e = next;
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
if (e == null)
throw new NoSuchElementException();
if ((next = (current = e).next) == null && (t = table) != null) {
do {} while (index < t.length && (next = t[index++]) == null);
}
return e;
}

public final void remove() {
Node<K,V> p = current;
if (p == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
current = null;
K key = p.key;
removeNode(hash(key), key, null, false, false);
expectedModCount = modCount;
}
}

final class KeyIterator extends HashIterator
implements Iterator<K> {
public final K next() { return nextNode().key; }
}

final class ValueIterator extends HashIterator
implements Iterator<V> {
public final V next() { return nextNode().value; }
}

final class EntryIterator extends HashIterator
implements Iterator<Map.Entry<K,V>> {
public final Map.Entry<K,V> next() { return nextNode(); }
}

/* ------------------------------------------------------------ */
// spliterators

static class HashMapSpliterator<K,V> {
final HashMap<K,V> map;
Node<K,V> current; // current node
int index; // current index, modified on advance/split
int fence; // one past last index
int est; // size estimate
int expectedModCount; // for comodification checks

HashMapSpliterator(HashMap<K,V> m, int origin,
int fence, int est,
int expectedModCount) {
this.map = m;
this.index = origin;
this.fence = fence;
this.est = est;
this.expectedModCount = expectedModCount;
}

final int getFence() { // initialize fence and size on first use
int hi;
if ((hi = fence) < 0) {
HashMap<K,V> m = map;
est = m.size;
expectedModCount = m.modCount;
Node<K,V>[] tab = m.table;
hi = fence = (tab == null) ? 0 : tab.length;
}
return hi;
}

public final long estimateSize() {
getFence(); // force init
return (long) est;
}
}

static final class KeySpliterator<K,V>
extends HashMapSpliterator<K,V>
implements Spliterator<K> {
KeySpliterator(HashMap<K,V> m, int origin, int fence, int est,
int expectedModCount) {
super(m, origin, fence, est, expectedModCount);
}

public KeySpliterator<K,V> trySplit() {
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
return (lo >= mid || current != null) ? null :
new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
expectedModCount);
}

public void forEachRemaining(Consumer<? super K> action) {
int i, hi, mc;
if (action == null)
throw new NullPointerException();
HashMap<K,V> m = map;
Node<K,V>[] tab = m.table;
if ((hi = fence) < 0) {
mc = expectedModCount = m.modCount;
hi = fence = (tab == null) ? 0 : tab.length;
}
else
mc = expectedModCount;
if (tab != null && tab.length >= hi &&
(i = index) >= 0 && (i < (index = hi) || current != null)) {
Node<K,V> p = current;
current = null;
do {
if (p == null)
p = tab[i++];
else {
action.accept(p.key);
p = p.next;
}
} while (p != null || i < hi);
if (m.modCount != mc)
throw new ConcurrentModificationException();
}
}

public boolean tryAdvance(Consumer<? super K> action) {
int hi;
if (action == null)
throw new NullPointerException();
Node<K,V>[] tab = map.table;
if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
while (current != null || index < hi) {
if (current == null)
current = tab[index++];
else {
K k = current.key;
current = current.next;
action.accept(k);
if (map.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}
}
}
return false;
}

public int characteristics() {
return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
Spliterator.DISTINCT;
}
}

static final class ValueSpliterator<K,V>
extends HashMapSpliterator<K,V>
implements Spliterator<V> {
ValueSpliterator(HashMap<K,V> m, int origin, int fence, int est,
int expectedModCount) {
super(m, origin, fence, est, expectedModCount);
}

public ValueSpliterator<K,V> trySplit() {
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
return (lo >= mid || current != null) ? null :
new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
expectedModCount);
}

public void forEachRemaining(Consumer<? super V> action) {
int i, hi, mc;
if (action == null)
throw new NullPointerException();
HashMap<K,V> m = map;
Node<K,V>[] tab = m.table;
if ((hi = fence) < 0) {
mc = expectedModCount = m.modCount;
hi = fence = (tab == null) ? 0 : tab.length;
}
else
mc = expectedModCount;
if (tab != null && tab.length >= hi &&
(i = index) >= 0 && (i < (index = hi) || current != null)) {
Node<K,V> p = current;
current = null;
do {
if (p == null)
p = tab[i++];
else {
action.accept(p.value);
p = p.next;
}
} while (p != null || i < hi);
if (m.modCount != mc)
throw new ConcurrentModificationException();
}
}

public boolean tryAdvance(Consumer<? super V> action) {
int hi;
if (action == null)
throw new NullPointerException();
Node<K,V>[] tab = map.table;
if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
while (current != null || index < hi) {
if (current == null)
current = tab[index++];
else {
V v = current.value;
current = current.next;
action.accept(v);
if (map.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}
}
}
return false;
}

public int characteristics() {
return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);
}
}

static final class EntrySpliterator<K,V>
extends HashMapSpliterator<K,V>
implements Spliterator<Map.Entry<K,V>> {
EntrySpliterator(HashMap<K,V> m, int origin, int fence, int est,
int expectedModCount) {
super(m, origin, fence, est, expectedModCount);
}

public EntrySpliterator<K,V> trySplit() {
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
return (lo >= mid || current != null) ? null :
new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
expectedModCount);
}

public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
int i, hi, mc;
if (action == null)
throw new NullPointerException();
HashMap<K,V> m = map;
Node<K,V>[] tab = m.table;
if ((hi = fence) < 0) {
mc = expectedModCount = m.modCount;
hi = fence = (tab == null) ? 0 : tab.length;
}
else
mc = expectedModCount;
if (tab != null && tab.length >= hi &&
(i = index) >= 0 && (i < (index = hi) || current != null)) {
Node<K,V> p = current;
current = null;
do {
if (p == null)
p = tab[i++];
else {
action.accept(p);
p = p.next;
}
} while (p != null || i < hi);
if (m.modCount != mc)
throw new ConcurrentModificationException();
}
}

public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
int hi;
if (action == null)
throw new NullPointerException();
Node<K,V>[] tab = map.table;
if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
while (current != null || index < hi) {
if (current == null)
current = tab[index++];
else {
Node<K,V> e = current;
current = current.next;
action.accept(e);
if (map.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}
}
}
return false;
}

public int characteristics() {
return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
Spliterator.DISTINCT;
}
}

/* ------------------------------------------------------------ */
// LinkedHashMap support


/*
* The following package-protected methods are designed to be
* overridden by LinkedHashMap, but not by any other subclass.
* Nearly all other internal methods are also package-protected
* but are declared final, so can be used by LinkedHashMap, view
* classes, and HashSet.
*/

// Create a regular (non-tree) node
Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
return new Node<>(hash, key, value, next);
}

// For conversion from TreeNodes to plain nodes
Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
return new Node<>(p.hash, p.key, p.value, next);
}

// Create a tree bin node
TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
return new TreeNode<>(hash, key, value, next);
}

// For treeifyBin
TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
return new TreeNode<>(p.hash, p.key, p.value, next);
}

/**
* Reset to initial default state. Called by clone and readObject.
*/
void reinitialize() {
table = null;
entrySet = null;
keySet = null;
values = null;
modCount = 0;
threshold = 0;
size = 0;
}

// Callbacks to allow LinkedHashMap post-actions
void afterNodeAccess(Node<K,V> p) { }
void afterNodeInsertion(boolean evict) { }
void afterNodeRemoval(Node<K,V> p) { }

// Called only from writeObject, to ensure compatible ordering.
void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
Node<K,V>[] tab;
if (size > 0 && (tab = table) != null) {
for (int i = 0; i < tab.length; ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next) {
s.writeObject(e.key);
s.writeObject(e.value);
}
}
}
}

/* ------------------------------------------------------------ */
// Tree bins

/**
* Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
* extends Node) so can be used as extension of either regular or
* linked node.
*/
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
TreeNode<K,V> parent; // red-black tree links
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev; // needed to unlink next upon deletion
boolean red;
TreeNode(int hash, K key, V val, Node<K,V> next) {
super(hash, key, val, next);
}

/**
* Returns root of tree containing this node.
*/
final TreeNode<K,V> root() {
for (TreeNode<K,V> r = this, p;;) {
if ((p = r.parent) == null)
return r;
r = p;
}
}

/**
* Ensures that the given root is the first node of its bin.
*/
static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
int n;
if (root != null && tab != null && (n = tab.length) > 0) {
int index = (n - 1) & root.hash;
TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
if (root != first) {
Node<K,V> rn;
tab[index] = root;
TreeNode<K,V> rp = root.prev;
if ((rn = root.next) != null)
((TreeNode<K,V>)rn).prev = rp;
if (rp != null)
rp.next = rn;
if (first != null)
first.prev = root;
root.next = first;
root.prev = null;
}
assert checkInvariants(root);
}
}

/**
* Finds the node starting at root p with the given hash and key.
* The kc argument caches comparableClassFor(key) upon first use
* comparing keys.
*/
final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
TreeNode<K,V> p = this;
do {
int ph, dir; K pk;
TreeNode<K,V> pl = p.left, pr = p.right, q;
if ((ph = p.hash) > h)
p = pl;
else if (ph < h)
p = pr;
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
return p;
else if (pl == null)
p = pr;
else if (pr == null)
p = pl;
else if ((kc != null ||
(kc = comparableClassFor(k)) != null) &&
(dir = compareComparables(kc, k, pk)) != 0)
p = (dir < 0) ? pl : pr;
else if ((q = pr.find(h, k, kc)) != null)
return q;
else
p = pl;
} while (p != null);
return null;
}

/**
* Calls find for root node.
*/
final TreeNode<K,V> getTreeNode(int h, Object k) {
return ((parent != null) ? root() : this).find(h, k, null);
}

/**
* Tie-breaking utility for ordering insertions when equal
* hashCodes and non-comparable. We don't require a total
* order, just a consistent insertion rule to maintain
* equivalence across rebalancings. Tie-breaking further than
* necessary simplifies testing a bit.
*/
static int tieBreakOrder(Object a, Object b) {
int d;
if (a == null || b == null ||
(d = a.getClass().getName().
compareTo(b.getClass().getName())) == 0)
d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
-1 : 1);
return d;
}

/**
* Forms tree of the nodes linked from this node.
* @return root of tree
*/
final void treeify(Node<K,V>[] tab) {
TreeNode<K,V> root = null;
for (TreeNode<K,V> x = this, next; x != null; x = next) {
next = (TreeNode<K,V>)x.next;
x.left = x.right = null;
if (root == null) {
x.parent = null;
x.red = false;
root = x;
}
else {
K k = x.key;
int h = x.hash;
Class<?> kc = null;
for (TreeNode<K,V> p = root;;) {
int dir, ph;
K pk = p.key;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0)
dir = tieBreakOrder(k, pk);

TreeNode<K,V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
x.parent = xp;
if (dir <= 0)
xp.left = x;
else
xp.right = x;
root = balanceInsertion(root, x);
break;
}
}
}
}
moveRootToFront(tab, root);
}

/**
* Returns a list of non-TreeNodes replacing those linked from
* this node.
*/
final Node<K,V> untreeify(HashMap<K,V> map) {
Node<K,V> hd = null, tl = null;
for (Node<K,V> q = this; q != null; q = q.next) {
Node<K,V> p = map.replacementNode(q, null);
if (tl == null)
hd = p;
else
tl.next = p;
tl = p;
}
return hd;
}

/**
* Tree version of putVal.
*/
final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
int h, K k, V v) {
Class<?> kc = null;
boolean searched = false;
TreeNode<K,V> root = (parent != null) ? root() : this;
for (TreeNode<K,V> p = root;;) {
int dir, ph; K pk;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
return p;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0) {
if (!searched) {
TreeNode<K,V> q, ch;
searched = true;
if (((ch = p.left) != null &&
(q = ch.find(h, k, kc)) != null) ||
((ch = p.right) != null &&
(q = ch.find(h, k, kc)) != null))
return q;
}
dir = tieBreakOrder(k, pk);
}

TreeNode<K,V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
Node<K,V> xpn = xp.next;
TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
if (dir <= 0)
xp.left = x;
else
xp.right = x;
xp.next = x;
x.parent = x.prev = xp;
if (xpn != null)
((TreeNode<K,V>)xpn).prev = x;
moveRootToFront(tab, balanceInsertion(root, x));
return null;
}
}
}

/**
* Removes the given node, that must be present before this call.
* This is messier than typical red-black deletion code because we
* cannot swap the contents of an interior node with a leaf
* successor that is pinned by "next" pointers that are accessible
* independently during traversal. So instead we swap the tree
* linkages. If the current tree appears to have too few nodes,
* the bin is converted back to a plain bin. (The test triggers
* somewhere between 2 and 6 nodes, depending on tree structure).
*/
final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
boolean movable) {
int n;
if (tab == null || (n = tab.length) == 0)
return;
int index = (n - 1) & hash;
TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
if (pred == null)
tab[index] = first = succ;
else
pred.next = succ;
if (succ != null)
succ.prev = pred;
if (first == null)
return;
if (root.parent != null)
root = root.root();
if (root == null || root.right == null ||
(rl = root.left) == null || rl.left == null) {
tab[index] = first.untreeify(map); // too small
return;
}
TreeNode<K,V> p = this, pl = left, pr = right, replacement;
if (pl != null && pr != null) {
TreeNode<K,V> s = pr, sl;
while ((sl = s.left) != null) // find successor
s = sl;
boolean c = s.red; s.red = p.red; p.red = c; // swap colors
TreeNode<K,V> sr = s.right;
TreeNode<K,V> pp = p.parent;
if (s == pr) { // p was s's direct parent
p.parent = s;
s.right = p;
}
else {
TreeNode<K,V> sp = s.parent;
if ((p.parent = sp) != null) {
if (s == sp.left)
sp.left = p;
else
sp.right = p;
}
if ((s.right = pr) != null)
pr.parent = s;
}
p.left = null;
if ((p.right = sr) != null)
sr.parent = p;
if ((s.left = pl) != null)
pl.parent = s;
if ((s.parent = pp) == null)
root = s;
else if (p == pp.left)
pp.left = s;
else
pp.right = s;
if (sr != null)
replacement = sr;
else
replacement = p;
}
else if (pl != null)
replacement = pl;
else if (pr != null)
replacement = pr;
else
replacement = p;
if (replacement != p) {
TreeNode<K,V> pp = replacement.parent = p.parent;
if (pp == null)
root = replacement;
else if (p == pp.left)
pp.left = replacement;
else
pp.right = replacement;
p.left = p.right = p.parent = null;
}

TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);

if (replacement == p) { // detach
TreeNode<K,V> pp = p.parent;
p.parent = null;
if (pp != null) {
if (p == pp.left)
pp.left = null;
else if (p == pp.right)
pp.right = null;
}
}
if (movable)
moveRootToFront(tab, r);
}

/**
* Splits nodes in a tree bin into lower and upper tree bins,
* or untreeifies if now too small. Called only from resize;
* see above discussion about split bits and indices.
*
* @param map the map
* @param tab the table for recording bin heads
* @param index the index of the table being split
* @param bit the bit of hash to split on
*/
final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
TreeNode<K,V> b = this;
// Relink into lo and hi lists, preserving order
TreeNode<K,V> loHead = null, loTail = null;
TreeNode<K,V> hiHead = null, hiTail = null;
int lc = 0, hc = 0;
for (TreeNode<K,V> e = b, next; e != null; e = next) {
next = (TreeNode<K,V>)e.next;
e.next = null;
if ((e.hash & bit) == 0) {
if ((e.prev = loTail) == null)
loHead = e;
else
loTail.next = e;
loTail = e;
++lc;
}
else {
if ((e.prev = hiTail) == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
++hc;
}
}

if (loHead != null) {
if (lc <= UNTREEIFY_THRESHOLD)
tab[index] = loHead.untreeify(map);
else {
tab[index] = loHead;
if (hiHead != null) // (else is already treeified)
loHead.treeify(tab);
}
}
if (hiHead != null) {
if (hc <= UNTREEIFY_THRESHOLD)
tab[index + bit] = hiHead.untreeify(map);
else {
tab[index + bit] = hiHead;
if (loHead != null)
hiHead.treeify(tab);
}
}
}

/* ------------------------------------------------------------ */
// Red-black tree methods, all adapted from CLR

static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
TreeNode<K,V> p) {
TreeNode<K,V> r, pp, rl;
if (p != null && (r = p.right) != null) {
if ((rl = p.right = r.left) != null)
rl.parent = p;
if ((pp = r.parent = p.parent) == null)
(root = r).red = false;
else if (pp.left == p)
pp.left = r;
else
pp.right = r;
r.left = p;
p.parent = r;
}
return root;
}

static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
TreeNode<K,V> p) {
TreeNode<K,V> l, pp, lr;
if (p != null && (l = p.left) != null) {
if ((lr = p.left = l.right) != null)
lr.parent = p;
if ((pp = l.parent = p.parent) == null)
(root = l).red = false;
else if (pp.right == p)
pp.right = l;
else
pp.left = l;
l.right = p;
p.parent = l;
}
return root;
}

static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
TreeNode<K,V> x) {
x.red = true;
for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
if ((xp = x.parent) == null) {
x.red = false;
return x;
}
else if (!xp.red || (xpp = xp.parent) == null)
return root;
if (xp == (xppl = xpp.left)) {
if ((xppr = xpp.right) != null && xppr.red) {
xppr.red = false;
xp.red = false;
xpp.red = true;
x = xpp;
}
else {
if (x == xp.right) {
root = rotateLeft(root, x = xp);
xpp = (xp = x.parent) == null ? null : xp.parent;
}
if (xp != null) {
xp.red = false;
if (xpp != null) {
xpp.red = true;
root = rotateRight(root, xpp);
}
}
}
}
else {
if (xppl != null && xppl.red) {
xppl.red = false;
xp.red = false;
xpp.red = true;
x = xpp;
}
else {
if (x == xp.left) {
root = rotateRight(root, x = xp);
xpp = (xp = x.parent) == null ? null : xp.parent;
}
if (xp != null) {
xp.red = false;
if (xpp != null) {
xpp.red = true;
root = rotateLeft(root, xpp);
}
}
}
}
}
}

static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
TreeNode<K,V> x) {
for (TreeNode<K,V> xp, xpl, xpr;;) {
if (x == null || x == root)
return root;
else if ((xp = x.parent) == null) {
x.red = false;
return x;
}
else if (x.red) {
x.red = false;
return root;
}
else if ((xpl = xp.left) == x) {
if ((xpr = xp.right) != null && xpr.red) {
xpr.red = false;
xp.red = true;
root = rotateLeft(root, xp);
xpr = (xp = x.parent) == null ? null : xp.right;
}
if (xpr == null)
x = xp;
else {
TreeNode<K,V> sl = xpr.left, sr = xpr.right;
if ((sr == null || !sr.red) &&
(sl == null || !sl.red)) {
xpr.red = true;
x = xp;
}
else {
if (sr == null || !sr.red) {
if (sl != null)
sl.red = false;
xpr.red = true;
root = rotateRight(root, xpr);
xpr = (xp = x.parent) == null ?
null : xp.right;
}
if (xpr != null) {
xpr.red = (xp == null) ? false : xp.red;
if ((sr = xpr.right) != null)
sr.red = false;
}
if (xp != null) {
xp.red = false;
root = rotateLeft(root, xp);
}
x = root;
}
}
}
else { // symmetric
if (xpl != null && xpl.red) {
xpl.red = false;
xp.red = true;
root = rotateRight(root, xp);
xpl = (xp = x.parent) == null ? null : xp.left;
}
if (xpl == null)
x = xp;
else {
TreeNode<K,V> sl = xpl.left, sr = xpl.right;
if ((sl == null || !sl.red) &&
(sr == null || !sr.red)) {
xpl.red = true;
x = xp;
}
else {
if (sl == null || !sl.red) {
if (sr != null)
sr.red = false;
xpl.red = true;
root = rotateLeft(root, xpl);
xpl = (xp = x.parent) == null ?
null : xp.left;
}
if (xpl != null) {
xpl.red = (xp == null) ? false : xp.red;
if ((sl = xpl.left) != null)
sl.red = false;
}
if (xp != null) {
xp.red = false;
root = rotateRight(root, xp);
}
x = root;
}
}
}
}
}

/**
* Recursive invariant check
*/
static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
tb = t.prev, tn = (TreeNode<K,V>)t.next;
if (tb != null && tb.next != t)
return false;
if (tn != null && tn.prev != t)
return false;
if (tp != null && t != tp.left && t != tp.right)
return false;
if (tl != null && (tl.parent != t || tl.hash > t.hash))
return false;
if (tr != null && (tr.parent != t || tr.hash < t.hash))
return false;
if (t.red && tl != null && tl.red && tr != null && tr.red)
return false;
if (tl != null && !checkInvariants(tl))
return false;
if (tr != null && !checkInvariants(tr))
return false;
return true;
}
}

}

BigInteger类

BigInteger类

image.png

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
//
// Source code recreated from a .class file by IntelliJ IDEA
// (powered by Fernflower decompiler)
//

package java.math;

import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.ObjectStreamField;
import java.io.StreamCorruptedException;
import java.io.ObjectInputStream.GetField;
import java.io.ObjectOutputStream.PutField;
import java.util.Arrays;
import java.util.Objects;
import java.util.Random;
import java.util.concurrent.ThreadLocalRandom;
import jdk.internal.HotSpotIntrinsicCandidate;
import jdk.internal.misc.Unsafe;

public class BigInteger extends Number implements Comparable<BigInteger> {
final int signum;
final int[] mag;
private int bitCountPlusOne;
private int bitLengthPlusOne;
private int lowestSetBitPlusTwo;
private int firstNonzeroIntNumPlusTwo;
static final long LONG_MASK = 4294967295L;
private static final int MAX_MAG_LENGTH = 67108864;
private static final int PRIME_SEARCH_BIT_LENGTH_LIMIT = 500000000;
private static final int KARATSUBA_THRESHOLD = 80;
private static final int TOOM_COOK_THRESHOLD = 240;
private static final int KARATSUBA_SQUARE_THRESHOLD = 128;
private static final int TOOM_COOK_SQUARE_THRESHOLD = 216;
static final int BURNIKEL_ZIEGLER_THRESHOLD = 80;
static final int BURNIKEL_ZIEGLER_OFFSET = 40;
private static final int SCHOENHAGE_BASE_CONVERSION_THRESHOLD = 20;
private static final int MULTIPLY_SQUARE_THRESHOLD = 20;
private static final int MONTGOMERY_INTRINSIC_THRESHOLD = 512;
private static long[] bitsPerDigit = new long[]{0L, 0L, 1024L, 1624L, 2048L, 2378L, 2648L, 2875L, 3072L, 3247L, 3402L, 3543L, 3672L, 3790L, 3899L, 4001L, 4096L, 4186L, 4271L, 4350L, 4426L, 4498L, 4567L, 4633L, 4696L, 4756L, 4814L, 4870L, 4923L, 4975L, 5025L, 5074L, 5120L, 5166L, 5210L, 5253L, 5295L};
private static final int SMALL_PRIME_THRESHOLD = 95;
private static final int DEFAULT_PRIME_CERTAINTY = 100;
private static final BigInteger SMALL_PRIME_PRODUCT = valueOf(152125131763605L);
private static final int MAX_CONSTANT = 16;
private static BigInteger[] posConst = new BigInteger[17];
private static BigInteger[] negConst = new BigInteger[17];
private static volatile BigInteger[][] powerCache;
private static final double[] logCache;
private static final double LOG_TWO = Math.log(2.0D);
public static final BigInteger ZERO;
public static final BigInteger ONE;
public static final BigInteger TWO;
private static final BigInteger NEGATIVE_ONE;
public static final BigInteger TEN;
static int[] bnExpModThreshTable;
private static String[] zeros;
private static int[] digitsPerLong;
private static BigInteger[] longRadix;
private static int[] digitsPerInt;
private static int[] intRadix;
private static final long serialVersionUID = -8287574255936472291L;
private static final ObjectStreamField[] serialPersistentFields;

public BigInteger(byte[] val, int off, int len) {
if (val.length == 0) {
throw new NumberFormatException("Zero length BigInteger");
} else {
Objects.checkFromIndexSize(off, len, val.length);
if (val[off] < 0) {
this.mag = makePositive(val, off, len);
this.signum = -1;
} else {
this.mag = stripLeadingZeroBytes(val, off, len);
this.signum = this.mag.length == 0 ? 0 : 1;
}

if (this.mag.length >= 67108864) {
this.checkRange();
}

}
}

public BigInteger(byte[] val) {
this((byte[])val, 0, val.length);
}

private BigInteger(int[] val) {
if (val.length == 0) {
throw new NumberFormatException("Zero length BigInteger");
} else {
if (val[0] < 0) {
this.mag = makePositive(val);
this.signum = -1;
} else {
this.mag = trustedStripLeadingZeroInts(val);
this.signum = this.mag.length == 0 ? 0 : 1;
}

if (this.mag.length >= 67108864) {
this.checkRange();
}

}
}

public BigInteger(int signum, byte[] magnitude, int off, int len) {
if (signum >= -1 && signum <= 1) {
Objects.checkFromIndexSize(off, len, magnitude.length);
this.mag = stripLeadingZeroBytes(magnitude, off, len);
if (this.mag.length == 0) {
this.signum = 0;
} else {
if (signum == 0) {
throw new NumberFormatException("signum-magnitude mismatch");
}

this.signum = signum;
}

if (this.mag.length >= 67108864) {
this.checkRange();
}

} else {
throw new NumberFormatException("Invalid signum value");
}
}

public BigInteger(int signum, byte[] magnitude) {
this(signum, magnitude, 0, magnitude.length);
}

private BigInteger(int signum, int[] magnitude) {
this.mag = stripLeadingZeroInts(magnitude);
if (signum >= -1 && signum <= 1) {
if (this.mag.length == 0) {
this.signum = 0;
} else {
if (signum == 0) {
throw new NumberFormatException("signum-magnitude mismatch");
}

this.signum = signum;
}

if (this.mag.length >= 67108864) {
this.checkRange();
}

} else {
throw new NumberFormatException("Invalid signum value");
}
}

public BigInteger(String val, int radix) {
int cursor = 0;
int len = val.length();
if (radix >= 2 && radix <= 36) {
if (len == 0) {
throw new NumberFormatException("Zero length BigInteger");
} else {
int sign = 1;
int index1 = val.lastIndexOf(45);
int index2 = val.lastIndexOf(43);
if (index1 >= 0) {
if (index1 != 0 || index2 >= 0) {
throw new NumberFormatException("Illegal embedded sign character");
}

sign = -1;
cursor = 1;
} else if (index2 >= 0) {
if (index2 != 0) {
throw new NumberFormatException("Illegal embedded sign character");
}

cursor = 1;
}

if (cursor == len) {
throw new NumberFormatException("Zero length BigInteger");
} else {
while(cursor < len && Character.digit(val.charAt(cursor), radix) == 0) {
++cursor;
}

if (cursor == len) {
this.signum = 0;
this.mag = ZERO.mag;
} else {
int numDigits = len - cursor;
this.signum = sign;
long numBits = ((long)numDigits * bitsPerDigit[radix] >>> 10) + 1L;
if (numBits + 31L >= 4294967296L) {
reportOverflow();
}

int numWords = (int)(numBits + 31L) >>> 5;
int[] magnitude = new int[numWords];
int firstGroupLen = numDigits % digitsPerInt[radix];
if (firstGroupLen == 0) {
firstGroupLen = digitsPerInt[radix];
}

String group = val.substring(cursor, cursor += firstGroupLen);
magnitude[numWords - 1] = Integer.parseInt(group, radix);
if (magnitude[numWords - 1] < 0) {
throw new NumberFormatException("Illegal digit");
} else {
int superRadix = intRadix[radix];
boolean var16 = false;

while(cursor < len) {
group = val.substring(cursor, cursor += digitsPerInt[radix]);
int groupVal = Integer.parseInt(group, radix);
if (groupVal < 0) {
throw new NumberFormatException("Illegal digit");
}

destructiveMulAdd(magnitude, superRadix, groupVal);
}

this.mag = trustedStripLeadingZeroInts(magnitude);
if (this.mag.length >= 67108864) {
this.checkRange();
}

}
}
}
}
} else {
throw new NumberFormatException("Radix out of range");
}
}

BigInteger(char[] val, int sign, int len) {
int cursor;
for(cursor = 0; cursor < len && Character.digit(val[cursor], 10) == 0; ++cursor) {
}

if (cursor == len) {
this.signum = 0;
this.mag = ZERO.mag;
} else {
int numDigits = len - cursor;
this.signum = sign;
int numWords;
if (len < 10) {
numWords = 1;
} else {
long numBits = ((long)numDigits * bitsPerDigit[10] >>> 10) + 1L;
if (numBits + 31L >= 4294967296L) {
reportOverflow();
}

numWords = (int)(numBits + 31L) >>> 5;
}

int[] magnitude = new int[numWords];
int firstGroupLen = numDigits % digitsPerInt[10];
if (firstGroupLen == 0) {
firstGroupLen = digitsPerInt[10];
}

magnitude[numWords - 1] = this.parseInt(val, cursor, cursor += firstGroupLen);

while(cursor < len) {
int groupVal = this.parseInt(val, cursor, cursor += digitsPerInt[10]);
destructiveMulAdd(magnitude, intRadix[10], groupVal);
}

this.mag = trustedStripLeadingZeroInts(magnitude);
if (this.mag.length >= 67108864) {
this.checkRange();
}

}
}

private int parseInt(char[] source, int start, int end) {
int result = Character.digit(source[start++], 10);
if (result == -1) {
throw new NumberFormatException(new String(source));
} else {
for(int index = start; index < end; ++index) {
int nextVal = Character.digit(source[index], 10);
if (nextVal == -1) {
throw new NumberFormatException(new String(source));
}

result = 10 * result + nextVal;
}

return result;
}
}

private static void destructiveMulAdd(int[] x, int y, int z) {
long ylong = (long)y & 4294967295L;
long zlong = (long)z & 4294967295L;
int len = x.length;
long product = 0L;
long carry = 0L;

for(int i = len - 1; i >= 0; --i) {
product = ylong * ((long)x[i] & 4294967295L) + carry;
x[i] = (int)product;
carry = product >>> 32;
}

long sum = ((long)x[len - 1] & 4294967295L) + zlong;
x[len - 1] = (int)sum;
carry = sum >>> 32;

for(int i = len - 2; i >= 0; --i) {
sum = ((long)x[i] & 4294967295L) + carry;
x[i] = (int)sum;
carry = sum >>> 32;
}

}

public BigInteger(String val) {
this((String)val, 10);
}

public BigInteger(int numBits, Random rnd) {
this(1, (byte[])randomBits(numBits, rnd));
}

private static byte[] randomBits(int numBits, Random rnd) {
if (numBits < 0) {
throw new IllegalArgumentException("numBits must be non-negative");
} else {
int numBytes = (int)(((long)numBits + 7L) / 8L);
byte[] randomBits = new byte[numBytes];
if (numBytes > 0) {
rnd.nextBytes(randomBits);
int excessBits = 8 * numBytes - numBits;
randomBits[0] = (byte)(randomBits[0] & (1 << 8 - excessBits) - 1);
}

return randomBits;
}
}

public BigInteger(int bitLength, int certainty, Random rnd) {
if (bitLength < 2) {
throw new ArithmeticException("bitLength < 2");
} else {
BigInteger prime = bitLength < 95 ? smallPrime(bitLength, certainty, rnd) : largePrime(bitLength, certainty, rnd);
this.signum = 1;
this.mag = prime.mag;
}
}

public static BigInteger probablePrime(int bitLength, Random rnd) {
if (bitLength < 2) {
throw new ArithmeticException("bitLength < 2");
} else {
return bitLength < 95 ? smallPrime(bitLength, 100, rnd) : largePrime(bitLength, 100, rnd);
}
}

private static BigInteger smallPrime(int bitLength, int certainty, Random rnd) {
int magLen = bitLength + 31 >>> 5;
int[] temp = new int[magLen];
int highBit = 1 << (bitLength + 31 & 31);
int highMask = (highBit << 1) - 1;

BigInteger p;
do {
long r;
do {
for(int i = 0; i < magLen; ++i) {
temp[i] = rnd.nextInt();
}

temp[0] = temp[0] & highMask | highBit;
if (bitLength > 2) {
temp[magLen - 1] |= 1;
}

p = new BigInteger(temp, 1);
if (bitLength <= 6) {
break;
}

r = p.remainder(SMALL_PRIME_PRODUCT).longValue();
} while(r % 3L == 0L || r % 5L == 0L || r % 7L == 0L || r % 11L == 0L || r % 13L == 0L || r % 17L == 0L || r % 19L == 0L || r % 23L == 0L || r % 29L == 0L || r % 31L == 0L || r % 37L == 0L || r % 41L == 0L);

if (bitLength < 4) {
return p;
}
} while(!p.primeToCertainty(certainty, rnd));

return p;
}

private static BigInteger largePrime(int bitLength, int certainty, Random rnd) {
BigInteger p = (new BigInteger(bitLength, rnd)).setBit(bitLength - 1);
int[] var10000 = p.mag;
int var10001 = p.mag.length - 1;
var10000[var10001] &= -2;
int searchLen = getPrimeSearchLen(bitLength);
BitSieve searchSieve = new BitSieve(p, searchLen);

BigInteger candidate;
for(candidate = searchSieve.retrieve(p, certainty, rnd); candidate == null || candidate.bitLength() != bitLength; candidate = searchSieve.retrieve(p, certainty, rnd)) {
p = p.add(valueOf((long)(2 * searchLen)));
if (p.bitLength() != bitLength) {
p = (new BigInteger(bitLength, rnd)).setBit(bitLength - 1);
}

var10000 = p.mag;
var10001 = p.mag.length - 1;
var10000[var10001] &= -2;
searchSieve = new BitSieve(p, searchLen);
}

return candidate;
}

public BigInteger nextProbablePrime() {
if (this.signum < 0) {
throw new ArithmeticException("start < 0: " + this);
} else if (this.signum != 0 && !this.equals(ONE)) {
BigInteger result = this.add(ONE);
if (result.bitLength() < 95) {
if (!result.testBit(0)) {
result = result.add(ONE);
}

while(true) {
while(true) {
if (result.bitLength() > 6) {
long r = result.remainder(SMALL_PRIME_PRODUCT).longValue();
if (r % 3L == 0L || r % 5L == 0L || r % 7L == 0L || r % 11L == 0L || r % 13L == 0L || r % 17L == 0L || r % 19L == 0L || r % 23L == 0L || r % 29L == 0L || r % 31L == 0L || r % 37L == 0L || r % 41L == 0L) {
result = result.add(TWO);
continue;
}
}

if (result.bitLength() < 4) {
return result;
}

if (result.primeToCertainty(100, (Random)null)) {
return result;
}

result = result.add(TWO);
}
}
} else {
if (result.testBit(0)) {
result = result.subtract(ONE);
}

int searchLen = getPrimeSearchLen(result.bitLength());

while(true) {
BitSieve searchSieve = new BitSieve(result, searchLen);
BigInteger candidate = searchSieve.retrieve(result, 100, (Random)null);
if (candidate != null) {
return candidate;
}

result = result.add(valueOf((long)(2 * searchLen)));
}
}
} else {
return TWO;
}
}

private static int getPrimeSearchLen(int bitLength) {
if (bitLength > 500000001) {
throw new ArithmeticException("Prime search implementation restriction on bitLength");
} else {
return bitLength / 20 * 64;
}
}

boolean primeToCertainty(int certainty, Random random) {
int rounds = false;
int n = (Math.min(certainty, 2147483646) + 1) / 2;
int sizeInBits = this.bitLength();
byte rounds;
int rounds;
if (sizeInBits < 100) {
rounds = 50;
rounds = n < rounds ? n : rounds;
return this.passesMillerRabin(rounds, random);
} else {
if (sizeInBits < 256) {
rounds = 27;
} else if (sizeInBits < 512) {
rounds = 15;
} else if (sizeInBits < 768) {
rounds = 8;
} else if (sizeInBits < 1024) {
rounds = 4;
} else {
rounds = 2;
}

rounds = n < rounds ? n : rounds;
return this.passesMillerRabin(rounds, random) && this.passesLucasLehmer();
}
}

private boolean passesLucasLehmer() {
BigInteger thisPlusOne = this.add(ONE);

int d;
for(d = 5; jacobiSymbol(d, this) != -1; d = d < 0 ? Math.abs(d) + 2 : -(d + 2)) {
}

BigInteger u = lucasLehmerSequence(d, thisPlusOne, this);
return u.mod(this).equals(ZERO);
}

private static int jacobiSymbol(int p, BigInteger n) {
if (p == 0) {
return 0;
} else {
int j = 1;
int u = n.mag[n.mag.length - 1];
int t;
if (p < 0) {
p = -p;
t = u & 7;
if (t == 3 || t == 7) {
j = -j;
}
}

while((p & 3) == 0) {
p >>= 2;
}

if ((p & 1) == 0) {
p >>= 1;
if (((u ^ u >> 1) & 2) != 0) {
j = -j;
}
}

if (p == 1) {
return j;
} else {
if ((p & u & 2) != 0) {
j = -j;
}

for(u = n.mod(valueOf((long)p)).intValue(); u != 0; u %= t) {
while((u & 3) == 0) {
u >>= 2;
}

if ((u & 1) == 0) {
u >>= 1;
if (((p ^ p >> 1) & 2) != 0) {
j = -j;
}
}

if (u == 1) {
return j;
}

assert u < p;

t = u;
u = p;
p = t;
if ((u & t & 2) != 0) {
j = -j;
}
}

return 0;
}
}
}

private static BigInteger lucasLehmerSequence(int z, BigInteger k, BigInteger n) {
BigInteger d = valueOf((long)z);
BigInteger u = ONE;
BigInteger v = ONE;

for(int i = k.bitLength() - 2; i >= 0; --i) {
BigInteger u2 = u.multiply(v).mod(n);
BigInteger v2 = v.square().add(d.multiply(u.square())).mod(n);
if (v2.testBit(0)) {
v2 = v2.subtract(n);
}

v2 = v2.shiftRight(1);
u = u2;
v = v2;
if (k.testBit(i)) {
u2 = u2.add(v2).mod(n);
if (u2.testBit(0)) {
u2 = u2.subtract(n);
}

u2 = u2.shiftRight(1);
v2 = v2.add(d.multiply(u)).mod(n);
if (v2.testBit(0)) {
v2 = v2.subtract(n);
}

v2 = v2.shiftRight(1);
u = u2;
v = v2;
}
}

return u;
}

private boolean passesMillerRabin(int iterations, Random rnd) {
BigInteger thisMinusOne = this.subtract(ONE);
int a = thisMinusOne.getLowestSetBit();
BigInteger m = thisMinusOne.shiftRight(a);
if (rnd == null) {
rnd = ThreadLocalRandom.current();
}

for(int i = 0; i < iterations; ++i) {
BigInteger b;
do {
do {
b = new BigInteger(this.bitLength(), (Random)rnd);
} while(b.compareTo(ONE) <= 0);
} while(b.compareTo(this) >= 0);

int j = 0;

for(BigInteger z = b.modPow(m, this); (j != 0 || !z.equals(ONE)) && !z.equals(thisMinusOne); z = z.modPow(TWO, this)) {
if (j > 0 && z.equals(ONE)) {
return false;
}

++j;
if (j == a) {
return false;
}
}
}

return true;
}

BigInteger(int[] magnitude, int signum) {
this.signum = magnitude.length == 0 ? 0 : signum;
this.mag = magnitude;
if (this.mag.length >= 67108864) {
this.checkRange();
}

}

private BigInteger(byte[] magnitude, int signum) {
this.signum = magnitude.length == 0 ? 0 : signum;
this.mag = stripLeadingZeroBytes(magnitude, 0, magnitude.length);
if (this.mag.length >= 67108864) {
this.checkRange();
}

}

private void checkRange() {
if (this.mag.length > 67108864 || this.mag.length == 67108864 && this.mag[0] < 0) {
reportOverflow();
}

}

private static void reportOverflow() {
throw new ArithmeticException("BigInteger would overflow supported range");
}

public static BigInteger valueOf(long val) {
if (val == 0L) {
return ZERO;
} else if (val > 0L && val <= 16L) {
return posConst[(int)val];
} else {
return val < 0L && val >= -16L ? negConst[(int)(-val)] : new BigInteger(val);
}
}

private BigInteger(long val) {
if (val < 0L) {
val = -val;
this.signum = -1;
} else {
this.signum = 1;
}

int highWord = (int)(val >>> 32);
if (highWord == 0) {
this.mag = new int[1];
this.mag[0] = (int)val;
} else {
this.mag = new int[2];
this.mag[0] = highWord;
this.mag[1] = (int)val;
}

}

private static BigInteger valueOf(int[] val) {
return val[0] > 0 ? new BigInteger(val, 1) : new BigInteger(val);
}

public BigInteger add(BigInteger val) {
if (val.signum == 0) {
return this;
} else if (this.signum == 0) {
return val;
} else if (val.signum == this.signum) {
return new BigInteger(add(this.mag, val.mag), this.signum);
} else {
int cmp = this.compareMagnitude(val);
if (cmp == 0) {
return ZERO;
} else {
int[] resultMag = cmp > 0 ? subtract(this.mag, val.mag) : subtract(val.mag, this.mag);
resultMag = trustedStripLeadingZeroInts(resultMag);
return new BigInteger(resultMag, cmp == this.signum ? 1 : -1);
}
}
}

BigInteger add(long val) {
if (val == 0L) {
return this;
} else if (this.signum == 0) {
return valueOf(val);
} else if (Long.signum(val) == this.signum) {
return new BigInteger(add(this.mag, Math.abs(val)), this.signum);
} else {
int cmp = this.compareMagnitude(val);
if (cmp == 0) {
return ZERO;
} else {
int[] resultMag = cmp > 0 ? subtract(this.mag, Math.abs(val)) : subtract(Math.abs(val), this.mag);
resultMag = trustedStripLeadingZeroInts(resultMag);
return new BigInteger(resultMag, cmp == this.signum ? 1 : -1);
}
}
}

private static int[] add(int[] x, long val) {
long sum = 0L;
int xIndex = x.length;
int highWord = (int)(val >>> 32);
int[] result;
if (highWord == 0) {
result = new int[xIndex];
--xIndex;
sum = ((long)x[xIndex] & 4294967295L) + val;
result[xIndex] = (int)sum;
} else {
if (xIndex == 1) {
result = new int[2];
sum = val + ((long)x[0] & 4294967295L);
result[1] = (int)sum;
result[0] = (int)(sum >>> 32);
return result;
}

result = new int[xIndex];
--xIndex;
sum = ((long)x[xIndex] & 4294967295L) + (val & 4294967295L);
result[xIndex] = (int)sum;
--xIndex;
sum = ((long)x[xIndex] & 4294967295L) + ((long)highWord & 4294967295L) + (sum >>> 32);
result[xIndex] = (int)sum;
}

boolean carry;
for(carry = sum >>> 32 != 0L; xIndex > 0 && carry; carry = (result[xIndex] = x[xIndex] + 1) == 0) {
--xIndex;
}

while(xIndex > 0) {
--xIndex;
result[xIndex] = x[xIndex];
}

if (carry) {
int[] bigger = new int[result.length + 1];
System.arraycopy(result, 0, bigger, 1, result.length);
bigger[0] = 1;
return bigger;
} else {
return result;
}
}

private static int[] add(int[] x, int[] y) {
if (x.length < y.length) {
int[] tmp = x;
x = y;
y = tmp;
}

int xIndex = x.length;
int yIndex = y.length;
int[] result = new int[xIndex];
long sum = 0L;
if (yIndex == 1) {
--xIndex;
sum = ((long)x[xIndex] & 4294967295L) + ((long)y[0] & 4294967295L);
result[xIndex] = (int)sum;
} else {
while(yIndex > 0) {
--xIndex;
long var10000 = (long)x[xIndex] & 4294967295L;
--yIndex;
sum = var10000 + ((long)y[yIndex] & 4294967295L) + (sum >>> 32);
result[xIndex] = (int)sum;
}
}

boolean carry;
for(carry = sum >>> 32 != 0L; xIndex > 0 && carry; carry = (result[xIndex] = x[xIndex] + 1) == 0) {
--xIndex;
}

while(xIndex > 0) {
--xIndex;
result[xIndex] = x[xIndex];
}

if (carry) {
int[] bigger = new int[result.length + 1];
System.arraycopy(result, 0, bigger, 1, result.length);
bigger[0] = 1;
return bigger;
} else {
return result;
}
}

private static int[] subtract(long val, int[] little) {
int highWord = (int)(val >>> 32);
int[] result;
if (highWord == 0) {
result = new int[]{(int)(val - ((long)little[0] & 4294967295L))};
return result;
} else {
result = new int[2];
long difference;
if (little.length == 1) {
difference = ((long)((int)val) & 4294967295L) - ((long)little[0] & 4294967295L);
result[1] = (int)difference;
boolean borrow = difference >> 32 != 0L;
if (borrow) {
result[0] = highWord - 1;
} else {
result[0] = highWord;
}

return result;
} else {
difference = ((long)((int)val) & 4294967295L) - ((long)little[1] & 4294967295L);
result[1] = (int)difference;
difference = ((long)highWord & 4294967295L) - ((long)little[0] & 4294967295L) + (difference >> 32);
result[0] = (int)difference;
return result;
}
}
}

private static int[] subtract(int[] big, long val) {
int highWord = (int)(val >>> 32);
int bigIndex = big.length;
int[] result = new int[bigIndex];
long difference = 0L;
if (highWord == 0) {
--bigIndex;
difference = ((long)big[bigIndex] & 4294967295L) - val;
result[bigIndex] = (int)difference;
} else {
--bigIndex;
difference = ((long)big[bigIndex] & 4294967295L) - (val & 4294967295L);
result[bigIndex] = (int)difference;
--bigIndex;
difference = ((long)big[bigIndex] & 4294967295L) - ((long)highWord & 4294967295L) + (difference >> 32);
result[bigIndex] = (int)difference;
}

for(boolean borrow = difference >> 32 != 0L; bigIndex > 0 && borrow; borrow = (result[bigIndex] = big[bigIndex] - 1) == -1) {
--bigIndex;
}

while(bigIndex > 0) {
--bigIndex;
result[bigIndex] = big[bigIndex];
}

return result;
}

public BigInteger subtract(BigInteger val) {
if (val.signum == 0) {
return this;
} else if (this.signum == 0) {
return val.negate();
} else if (val.signum != this.signum) {
return new BigInteger(add(this.mag, val.mag), this.signum);
} else {
int cmp = this.compareMagnitude(val);
if (cmp == 0) {
return ZERO;
} else {
int[] resultMag = cmp > 0 ? subtract(this.mag, val.mag) : subtract(val.mag, this.mag);
resultMag = trustedStripLeadingZeroInts(resultMag);
return new BigInteger(resultMag, cmp == this.signum ? 1 : -1);
}
}
}

private static int[] subtract(int[] big, int[] little) {
int bigIndex = big.length;
int[] result = new int[bigIndex];
int littleIndex = little.length;

long difference;
for(difference = 0L; littleIndex > 0; result[bigIndex] = (int)difference) {
--bigIndex;
long var10000 = (long)big[bigIndex] & 4294967295L;
--littleIndex;
difference = var10000 - ((long)little[littleIndex] & 4294967295L) + (difference >> 32);
}

for(boolean borrow = difference >> 32 != 0L; bigIndex > 0 && borrow; borrow = (result[bigIndex] = big[bigIndex] - 1) == -1) {
--bigIndex;
}

while(bigIndex > 0) {
--bigIndex;
result[bigIndex] = big[bigIndex];
}

return result;
}

public BigInteger multiply(BigInteger val) {
return this.multiply(val, false);
}

private BigInteger multiply(BigInteger val, boolean isRecursion) {
if (val.signum != 0 && this.signum != 0) {
int xlen = this.mag.length;
if (val == this && xlen > 20) {
return this.square();
} else {
int ylen = val.mag.length;
if (xlen >= 80 && ylen >= 80) {
if (xlen < 240 && ylen < 240) {
return multiplyKaratsuba(this, val);
} else {
if (!isRecursion && (long)(bitLength(this.mag, this.mag.length) + bitLength(val.mag, val.mag.length)) > 2147483648L) {
reportOverflow();
}

return multiplyToomCook3(this, val);
}
} else {
int resultSign = this.signum == val.signum ? 1 : -1;
if (val.mag.length == 1) {
return multiplyByInt(this.mag, val.mag[0], resultSign);
} else if (this.mag.length == 1) {
return multiplyByInt(val.mag, this.mag[0], resultSign);
} else {
int[] result = multiplyToLen(this.mag, xlen, val.mag, ylen, (int[])null);
result = trustedStripLeadingZeroInts(result);
return new BigInteger(result, resultSign);
}
}
}
} else {
return ZERO;
}
}

private static BigInteger multiplyByInt(int[] x, int y, int sign) {
if (Integer.bitCount(y) == 1) {
return new BigInteger(shiftLeft(x, Integer.numberOfTrailingZeros(y)), sign);
} else {
int xlen = x.length;
int[] rmag = new int[xlen + 1];
long carry = 0L;
long yl = (long)y & 4294967295L;
int rstart = rmag.length - 1;

for(int i = xlen - 1; i >= 0; --i) {
long product = ((long)x[i] & 4294967295L) * yl + carry;
rmag[rstart--] = (int)product;
carry = product >>> 32;
}

if (carry == 0L) {
rmag = Arrays.copyOfRange(rmag, 1, rmag.length);
} else {
rmag[rstart] = (int)carry;
}

return new BigInteger(rmag, sign);
}
}

BigInteger multiply(long v) {
if (v != 0L && this.signum != 0) {
if (v == -9223372036854775808L) {
return this.multiply(valueOf(v));
} else {
int rsign = v > 0L ? this.signum : -this.signum;
if (v < 0L) {
v = -v;
}

long dh = v >>> 32;
long dl = v & 4294967295L;
int xlen = this.mag.length;
int[] value = this.mag;
int[] rmag = dh == 0L ? new int[xlen + 1] : new int[xlen + 2];
long carry = 0L;
int rstart = rmag.length - 1;

int i;
long product;
for(i = xlen - 1; i >= 0; --i) {
product = ((long)value[i] & 4294967295L) * dl + carry;
rmag[rstart--] = (int)product;
carry = product >>> 32;
}

rmag[rstart] = (int)carry;
if (dh != 0L) {
carry = 0L;
rstart = rmag.length - 2;

for(i = xlen - 1; i >= 0; --i) {
product = ((long)value[i] & 4294967295L) * dh + ((long)rmag[rstart] & 4294967295L) + carry;
rmag[rstart--] = (int)product;
carry = product >>> 32;
}

rmag[0] = (int)carry;
}

if (carry == 0L) {
rmag = Arrays.copyOfRange(rmag, 1, rmag.length);
}

return new BigInteger(rmag, rsign);
}
} else {
return ZERO;
}
}

private static int[] multiplyToLen(int[] x, int xlen, int[] y, int ylen, int[] z) {
multiplyToLenCheck(x, xlen);
multiplyToLenCheck(y, ylen);
return implMultiplyToLen(x, xlen, y, ylen, z);
}

@HotSpotIntrinsicCandidate
private static int[] implMultiplyToLen(int[] x, int xlen, int[] y, int ylen, int[] z) {
int xstart = xlen - 1;
int ystart = ylen - 1;
if (z == null || z.length < xlen + ylen) {
z = new int[xlen + ylen];
}

long carry = 0L;
int i = ystart;

int j;
for(j = ystart + 1 + xstart; i >= 0; --j) {
long product = ((long)y[i] & 4294967295L) * ((long)x[xstart] & 4294967295L) + carry;
z[j] = (int)product;
carry = product >>> 32;
--i;
}

z[xstart] = (int)carry;

for(i = xstart - 1; i >= 0; --i) {
carry = 0L;
j = ystart;

for(int k = ystart + 1 + i; j >= 0; --k) {
long product = ((long)y[j] & 4294967295L) * ((long)x[i] & 4294967295L) + ((long)z[k] & 4294967295L) + carry;
z[k] = (int)product;
carry = product >>> 32;
--j;
}

z[i] = (int)carry;
}

return z;
}

private static void multiplyToLenCheck(int[] array, int length) {
if (length > 0) {
Objects.requireNonNull(array);
if (length > array.length) {
throw new ArrayIndexOutOfBoundsException(length - 1);
}
}
}

private static BigInteger multiplyKaratsuba(BigInteger x, BigInteger y) {
int xlen = x.mag.length;
int ylen = y.mag.length;
int half = (Math.max(xlen, ylen) + 1) / 2;
BigInteger xl = x.getLower(half);
BigInteger xh = x.getUpper(half);
BigInteger yl = y.getLower(half);
BigInteger yh = y.getUpper(half);
BigInteger p1 = xh.multiply(yh);
BigInteger p2 = xl.multiply(yl);
BigInteger p3 = xh.add(xl).multiply(yh.add(yl));
BigInteger result = p1.shiftLeft(32 * half).add(p3.subtract(p1).subtract(p2)).shiftLeft(32 * half).add(p2);
return x.signum != y.signum ? result.negate() : result;
}

private static BigInteger multiplyToomCook3(BigInteger a, BigInteger b) {
int alen = a.mag.length;
int blen = b.mag.length;
int largest = Math.max(alen, blen);
int k = (largest + 2) / 3;
int r = largest - 2 * k;
BigInteger a2 = a.getToomSlice(k, r, 0, largest);
BigInteger a1 = a.getToomSlice(k, r, 1, largest);
BigInteger a0 = a.getToomSlice(k, r, 2, largest);
BigInteger b2 = b.getToomSlice(k, r, 0, largest);
BigInteger b1 = b.getToomSlice(k, r, 1, largest);
BigInteger b0 = b.getToomSlice(k, r, 2, largest);
BigInteger v0 = a0.multiply(b0, true);
BigInteger da1 = a2.add(a0);
BigInteger db1 = b2.add(b0);
BigInteger vm1 = da1.subtract(a1).multiply(db1.subtract(b1), true);
da1 = da1.add(a1);
db1 = db1.add(b1);
BigInteger v1 = da1.multiply(db1, true);
BigInteger v2 = da1.add(a2).shiftLeft(1).subtract(a0).multiply(db1.add(b2).shiftLeft(1).subtract(b0), true);
BigInteger vinf = a2.multiply(b2, true);
BigInteger t2 = v2.subtract(vm1).exactDivideBy3();
BigInteger tm1 = v1.subtract(vm1).shiftRight(1);
BigInteger t1 = v1.subtract(v0);
t2 = t2.subtract(t1).shiftRight(1);
t1 = t1.subtract(tm1).subtract(vinf);
t2 = t2.subtract(vinf.shiftLeft(1));
tm1 = tm1.subtract(t2);
int ss = k * 32;
BigInteger result = vinf.shiftLeft(ss).add(t2).shiftLeft(ss).add(t1).shiftLeft(ss).add(tm1).shiftLeft(ss).add(v0);
return a.signum != b.signum ? result.negate() : result;
}

private BigInteger getToomSlice(int lowerSize, int upperSize, int slice, int fullsize) {
int len = this.mag.length;
int offset = fullsize - len;
int start;
int end;
if (slice == 0) {
start = 0 - offset;
end = upperSize - 1 - offset;
} else {
start = upperSize + (slice - 1) * lowerSize - offset;
end = start + lowerSize - 1;
}

if (start < 0) {
start = 0;
}

if (end < 0) {
return ZERO;
} else {
int sliceSize = end - start + 1;
if (sliceSize <= 0) {
return ZERO;
} else if (start == 0 && sliceSize >= len) {
return this.abs();
} else {
int[] intSlice = new int[sliceSize];
System.arraycopy(this.mag, start, intSlice, 0, sliceSize);
return new BigInteger(trustedStripLeadingZeroInts(intSlice), 1);
}
}
}

private BigInteger exactDivideBy3() {
int len = this.mag.length;
int[] result = new int[len];
long borrow = 0L;

for(int i = len - 1; i >= 0; --i) {
long x = (long)this.mag[i] & 4294967295L;
long w = x - borrow;
if (borrow > x) {
borrow = 1L;
} else {
borrow = 0L;
}

long q = w * 2863311531L & 4294967295L;
result[i] = (int)q;
if (q >= 1431655766L) {
++borrow;
if (q >= 2863311531L) {
++borrow;
}
}
}

result = trustedStripLeadingZeroInts(result);
return new BigInteger(result, this.signum);
}

private BigInteger getLower(int n) {
int len = this.mag.length;
if (len <= n) {
return this.abs();
} else {
int[] lowerInts = new int[n];
System.arraycopy(this.mag, len - n, lowerInts, 0, n);
return new BigInteger(trustedStripLeadingZeroInts(lowerInts), 1);
}
}

private BigInteger getUpper(int n) {
int len = this.mag.length;
if (len <= n) {
return ZERO;
} else {
int upperLen = len - n;
int[] upperInts = new int[upperLen];
System.arraycopy(this.mag, 0, upperInts, 0, upperLen);
return new BigInteger(trustedStripLeadingZeroInts(upperInts), 1);
}
}

private BigInteger square() {
return this.square(false);
}

private BigInteger square(boolean isRecursion) {
if (this.signum == 0) {
return ZERO;
} else {
int len = this.mag.length;
if (len < 128) {
int[] z = squareToLen(this.mag, len, (int[])null);
return new BigInteger(trustedStripLeadingZeroInts(z), 1);
} else if (len < 216) {
return this.squareKaratsuba();
} else {
if (!isRecursion && (long)bitLength(this.mag, this.mag.length) > 1073741824L) {
reportOverflow();
}

return this.squareToomCook3();
}
}
}

private static final int[] squareToLen(int[] x, int len, int[] z) {
int zlen = len << 1;
if (z == null || z.length < zlen) {
z = new int[zlen];
}

implSquareToLenChecks(x, len, z, zlen);
return implSquareToLen(x, len, z, zlen);
}

private static void implSquareToLenChecks(int[] x, int len, int[] z, int zlen) throws RuntimeException {
if (len < 1) {
throw new IllegalArgumentException("invalid input length: " + len);
} else if (len > x.length) {
throw new IllegalArgumentException("input length out of bound: " + len + " > " + x.length);
} else if (len * 2 > z.length) {
throw new IllegalArgumentException("input length out of bound: " + len * 2 + " > " + z.length);
} else if (zlen < 1) {
throw new IllegalArgumentException("invalid input length: " + zlen);
} else if (zlen > z.length) {
throw new IllegalArgumentException("input length out of bound: " + len + " > " + z.length);
}
}

@HotSpotIntrinsicCandidate
private static final int[] implSquareToLen(int[] x, int len, int[] z, int zlen) {
int lastProductLowWord = 0;
int i = 0;

int offset;
for(offset = 0; i < len; ++i) {
long piece = (long)x[i] & 4294967295L;
long product = piece * piece;
z[offset++] = lastProductLowWord << 31 | (int)(product >>> 33);
z[offset++] = (int)(product >>> 1);
lastProductLowWord = (int)product;
}

i = len;

for(offset = 1; i > 0; offset += 2) {
int t = x[i - 1];
t = mulAdd(z, x, offset, i - 1, t);
addOne(z, offset - 1, i, t);
--i;
}

primitiveLeftShift(z, zlen, 1);
z[zlen - 1] |= x[len - 1] & 1;
return z;
}

private BigInteger squareKaratsuba() {
int half = (this.mag.length + 1) / 2;
BigInteger xl = this.getLower(half);
BigInteger xh = this.getUpper(half);
BigInteger xhs = xh.square();
BigInteger xls = xl.square();
return xhs.shiftLeft(half * 32).add(xl.add(xh).square().subtract(xhs.add(xls))).shiftLeft(half * 32).add(xls);
}

private BigInteger squareToomCook3() {
int len = this.mag.length;
int k = (len + 2) / 3;
int r = len - 2 * k;
BigInteger a2 = this.getToomSlice(k, r, 0, len);
BigInteger a1 = this.getToomSlice(k, r, 1, len);
BigInteger a0 = this.getToomSlice(k, r, 2, len);
BigInteger v0 = a0.square(true);
BigInteger da1 = a2.add(a0);
BigInteger vm1 = da1.subtract(a1).square(true);
da1 = da1.add(a1);
BigInteger v1 = da1.square(true);
BigInteger vinf = a2.square(true);
BigInteger v2 = da1.add(a2).shiftLeft(1).subtract(a0).square(true);
BigInteger t2 = v2.subtract(vm1).exactDivideBy3();
BigInteger tm1 = v1.subtract(vm1).shiftRight(1);
BigInteger t1 = v1.subtract(v0);
t2 = t2.subtract(t1).shiftRight(1);
t1 = t1.subtract(tm1).subtract(vinf);
t2 = t2.subtract(vinf.shiftLeft(1));
tm1 = tm1.subtract(t2);
int ss = k * 32;
return vinf.shiftLeft(ss).add(t2).shiftLeft(ss).add(t1).shiftLeft(ss).add(tm1).shiftLeft(ss).add(v0);
}

public BigInteger divide(BigInteger val) {
return val.mag.length >= 80 && this.mag.length - val.mag.length >= 40 ? this.divideBurnikelZiegler(val) : this.divideKnuth(val);
}

private BigInteger divideKnuth(BigInteger val) {
MutableBigInteger q = new MutableBigInteger();
MutableBigInteger a = new MutableBigInteger(this.mag);
MutableBigInteger b = new MutableBigInteger(val.mag);
a.divideKnuth(b, q, false);
return q.toBigInteger(this.signum * val.signum);
}

public BigInteger[] divideAndRemainder(BigInteger val) {
return val.mag.length >= 80 && this.mag.length - val.mag.length >= 40 ? this.divideAndRemainderBurnikelZiegler(val) : this.divideAndRemainderKnuth(val);
}

private BigInteger[] divideAndRemainderKnuth(BigInteger val) {
BigInteger[] result = new BigInteger[2];
MutableBigInteger q = new MutableBigInteger();
MutableBigInteger a = new MutableBigInteger(this.mag);
MutableBigInteger b = new MutableBigInteger(val.mag);
MutableBigInteger r = a.divideKnuth(b, q);
result[0] = q.toBigInteger(this.signum == val.signum ? 1 : -1);
result[1] = r.toBigInteger(this.signum);
return result;
}

public BigInteger remainder(BigInteger val) {
return val.mag.length >= 80 && this.mag.length - val.mag.length >= 40 ? this.remainderBurnikelZiegler(val) : this.remainderKnuth(val);
}

private BigInteger remainderKnuth(BigInteger val) {
MutableBigInteger q = new MutableBigInteger();
MutableBigInteger a = new MutableBigInteger(this.mag);
MutableBigInteger b = new MutableBigInteger(val.mag);
return a.divideKnuth(b, q).toBigInteger(this.signum);
}

private BigInteger divideBurnikelZiegler(BigInteger val) {
return this.divideAndRemainderBurnikelZiegler(val)[0];
}

private BigInteger remainderBurnikelZiegler(BigInteger val) {
return this.divideAndRemainderBurnikelZiegler(val)[1];
}

private BigInteger[] divideAndRemainderBurnikelZiegler(BigInteger val) {
MutableBigInteger q = new MutableBigInteger();
MutableBigInteger r = (new MutableBigInteger(this)).divideAndRemainderBurnikelZiegler(new MutableBigInteger(val), q);
BigInteger qBigInt = q.isZero() ? ZERO : q.toBigInteger(this.signum * val.signum);
BigInteger rBigInt = r.isZero() ? ZERO : r.toBigInteger(this.signum);
return new BigInteger[]{qBigInt, rBigInt};
}

public BigInteger pow(int exponent) {
if (exponent < 0) {
throw new ArithmeticException("Negative exponent");
} else if (this.signum == 0) {
return exponent == 0 ? ONE : this;
} else {
BigInteger partToSquare = this.abs();
int powersOfTwo = partToSquare.getLowestSetBit();
long bitsToShiftLong = (long)powersOfTwo * (long)exponent;
if (bitsToShiftLong > 2147483647L) {
reportOverflow();
}

int bitsToShift = (int)bitsToShiftLong;
int remainingBits;
if (powersOfTwo > 0) {
partToSquare = partToSquare.shiftRight(powersOfTwo);
remainingBits = partToSquare.bitLength();
if (remainingBits == 1) {
if (this.signum < 0 && (exponent & 1) == 1) {
return NEGATIVE_ONE.shiftLeft(bitsToShift);
}

return ONE.shiftLeft(bitsToShift);
}
} else {
remainingBits = partToSquare.bitLength();
if (remainingBits == 1) {
if (this.signum < 0 && (exponent & 1) == 1) {
return NEGATIVE_ONE;
}

return ONE;
}
}

long scaleFactor = (long)remainingBits * (long)exponent;
if (partToSquare.mag.length == 1 && scaleFactor <= 62L) {
int newSign = this.signum < 0 && (exponent & 1) == 1 ? -1 : 1;
long result = 1L;
long baseToPow2 = (long)partToSquare.mag[0] & 4294967295L;
int workingExponent = exponent;

while(workingExponent != 0) {
if ((workingExponent & 1) == 1) {
result *= baseToPow2;
}

if ((workingExponent >>>= 1) != 0) {
baseToPow2 *= baseToPow2;
}
}

if (powersOfTwo > 0) {
if ((long)bitsToShift + scaleFactor <= 62L) {
return valueOf((result << bitsToShift) * (long)newSign);
} else {
return valueOf(result * (long)newSign).shiftLeft(bitsToShift);
}
} else {
return valueOf(result * (long)newSign);
}
} else {
if ((long)this.bitLength() * (long)exponent / 32L > 67108864L) {
reportOverflow();
}

BigInteger answer = ONE;
int workingExponent = exponent;

while(workingExponent != 0) {
if ((workingExponent & 1) == 1) {
answer = answer.multiply(partToSquare);
}

if ((workingExponent >>>= 1) != 0) {
partToSquare = partToSquare.square();
}
}

if (powersOfTwo > 0) {
answer = answer.shiftLeft(bitsToShift);
}

if (this.signum < 0 && (exponent & 1) == 1) {
return answer.negate();
} else {
return answer;
}
}
}
}

public BigInteger sqrt() {
if (this.signum < 0) {
throw new ArithmeticException("Negative BigInteger");
} else {
return (new MutableBigInteger(this.mag)).sqrt().toBigInteger();
}
}

public BigInteger[] sqrtAndRemainder() {
BigInteger s = this.sqrt();
BigInteger r = this.subtract(s.square());

assert r.compareTo(ZERO) >= 0;

return new BigInteger[]{s, r};
}

public BigInteger gcd(BigInteger val) {
if (val.signum == 0) {
return this.abs();
} else if (this.signum == 0) {
return val.abs();
} else {
MutableBigInteger a = new MutableBigInteger(this);
MutableBigInteger b = new MutableBigInteger(val);
MutableBigInteger result = a.hybridGCD(b);
return result.toBigInteger(1);
}
}

static int bitLengthForInt(int n) {
return 32 - Integer.numberOfLeadingZeros(n);
}

private static int[] leftShift(int[] a, int len, int n) {
int nInts = n >>> 5;
int nBits = n & 31;
int bitsInHighWord = bitLengthForInt(a[0]);
if (n <= 32 - bitsInHighWord) {
primitiveLeftShift(a, len, nBits);
return a;
} else {
int[] result;
if (nBits <= 32 - bitsInHighWord) {
result = new int[nInts + len];
System.arraycopy(a, 0, result, 0, len);
primitiveLeftShift(result, result.length, nBits);
return result;
} else {
result = new int[nInts + len + 1];
System.arraycopy(a, 0, result, 0, len);
primitiveRightShift(result, result.length, 32 - nBits);
return result;
}
}
}

static void primitiveRightShift(int[] a, int len, int n) {
int n2 = 32 - n;
int i = len - 1;

for(int c = a[i]; i > 0; --i) {
int b = c;
c = a[i - 1];
a[i] = c << n2 | b >>> n;
}

a[0] >>>= n;
}

static void primitiveLeftShift(int[] a, int len, int n) {
if (len != 0 && n != 0) {
int n2 = 32 - n;
int i = 0;
int c = a[i];

for(int m = i + len - 1; i < m; ++i) {
int b = c;
c = a[i + 1];
a[i] = b << n | c >>> n2;
}

a[len - 1] <<= n;
}
}

private static int bitLength(int[] val, int len) {
return len == 0 ? 0 : (len - 1 << 5) + bitLengthForInt(val[0]);
}

public BigInteger abs() {
return this.signum >= 0 ? this : this.negate();
}

public BigInteger negate() {
return new BigInteger(this.mag, -this.signum);
}

public int signum() {
return this.signum;
}

public BigInteger mod(BigInteger m) {
if (m.signum <= 0) {
throw new ArithmeticException("BigInteger: modulus not positive");
} else {
BigInteger result = this.remainder(m);
return result.signum >= 0 ? result : result.add(m);
}
}

public BigInteger modPow(BigInteger exponent, BigInteger m) {
if (m.signum <= 0) {
throw new ArithmeticException("BigInteger: modulus not positive");
} else if (exponent.signum == 0) {
return m.equals(ONE) ? ZERO : ONE;
} else if (this.equals(ONE)) {
return m.equals(ONE) ? ZERO : ONE;
} else if (this.equals(ZERO) && exponent.signum >= 0) {
return ZERO;
} else if (this.equals(negConst[1]) && !exponent.testBit(0)) {
return m.equals(ONE) ? ZERO : ONE;
} else {
boolean invertResult;
if (invertResult = exponent.signum < 0) {
exponent = exponent.negate();
}

BigInteger base = this.signum >= 0 && this.compareTo(m) < 0 ? this : this.mod(m);
BigInteger result;
if (m.testBit(0)) {
result = base.oddModPow(exponent, m);
} else {
int p = m.getLowestSetBit();
BigInteger m1 = m.shiftRight(p);
BigInteger m2 = ONE.shiftLeft(p);
BigInteger base2 = this.signum >= 0 && this.compareTo(m1) < 0 ? this : this.mod(m1);
BigInteger a1 = m1.equals(ONE) ? ZERO : base2.oddModPow(exponent, m1);
BigInteger a2 = base.modPow2(exponent, p);
BigInteger y1 = m2.modInverse(m1);
BigInteger y2 = m1.modInverse(m2);
if (m.mag.length < 33554432) {
result = a1.multiply(m2).multiply(y1).add(a2.multiply(m1).multiply(y2)).mod(m);
} else {
MutableBigInteger t1 = new MutableBigInteger();
(new MutableBigInteger(a1.multiply(m2))).multiply(new MutableBigInteger(y1), t1);
MutableBigInteger t2 = new MutableBigInteger();
(new MutableBigInteger(a2.multiply(m1))).multiply(new MutableBigInteger(y2), t2);
t1.add(t2);
MutableBigInteger q = new MutableBigInteger();
result = t1.divide(new MutableBigInteger(m), q).toBigInteger();
}
}

return invertResult ? result.modInverse(m) : result;
}
}

private static int[] montgomeryMultiply(int[] a, int[] b, int[] n, int len, long inv, int[] product) {
implMontgomeryMultiplyChecks(a, b, n, len, product);
if (len > 512) {
product = multiplyToLen(a, len, b, len, product);
return montReduce(product, n, len, (int)inv);
} else {
return implMontgomeryMultiply(a, b, n, len, inv, materialize(product, len));
}
}

private static int[] montgomerySquare(int[] a, int[] n, int len, long inv, int[] product) {
implMontgomeryMultiplyChecks(a, a, n, len, product);
if (len > 512) {
product = squareToLen(a, len, product);
return montReduce(product, n, len, (int)inv);
} else {
return implMontgomerySquare(a, n, len, inv, materialize(product, len));
}
}

private static void implMontgomeryMultiplyChecks(int[] a, int[] b, int[] n, int len, int[] product) throws RuntimeException {
if (len % 2 != 0) {
throw new IllegalArgumentException("input array length must be even: " + len);
} else if (len < 1) {
throw new IllegalArgumentException("invalid input length: " + len);
} else if (len > a.length || len > b.length || len > n.length || product != null && len > product.length) {
throw new IllegalArgumentException("input array length out of bound: " + len);
}
}

private static int[] materialize(int[] z, int len) {
if (z == null || z.length < len) {
z = new int[len];
}

return z;
}

@HotSpotIntrinsicCandidate
private static int[] implMontgomeryMultiply(int[] a, int[] b, int[] n, int len, long inv, int[] product) {
product = multiplyToLen(a, len, b, len, product);
return montReduce(product, n, len, (int)inv);
}

@HotSpotIntrinsicCandidate
private static int[] implMontgomerySquare(int[] a, int[] n, int len, long inv, int[] product) {
product = squareToLen(a, len, product);
return montReduce(product, n, len, (int)inv);
}

private BigInteger oddModPow(BigInteger y, BigInteger z) {
if (y.equals(ONE)) {
return this;
} else if (this.signum == 0) {
return ZERO;
} else {
int[] base = (int[])this.mag.clone();
int[] exp = y.mag;
int[] mod = z.mag;
int modLen = mod.length;
if ((modLen & 1) != 0) {
int[] x = new int[modLen + 1];
System.arraycopy(mod, 0, x, 1, modLen);
mod = x;
++modLen;
}

int wbits = 0;
int ebits = bitLength(exp, exp.length);
if (ebits != 17 || exp[0] != 65537) {
while(ebits > bnExpModThreshTable[wbits]) {
++wbits;
}
}

int tblmask = 1 << wbits;
int[][] table = new int[tblmask][];

for(int i = 0; i < tblmask; ++i) {
table[i] = new int[modLen];
}

long n0 = ((long)mod[modLen - 1] & 4294967295L) + (((long)mod[modLen - 2] & 4294967295L) << 32);
long inv = -MutableBigInteger.inverseMod64(n0);
int[] a = leftShift(base, base.length, modLen << 5);
MutableBigInteger q = new MutableBigInteger();
MutableBigInteger a2 = new MutableBigInteger(a);
MutableBigInteger b2 = new MutableBigInteger(mod);
b2.normalize();
MutableBigInteger r = a2.divide(b2, q);
table[0] = r.toIntArray();
int[] t;
if (table[0].length < modLen) {
int offset = modLen - table[0].length;
t = new int[modLen];
System.arraycopy(table[0], 0, t, offset, table[0].length);
table[0] = t;
}

int[] b = montgomerySquare(table[0], mod, modLen, inv, (int[])null);
t = Arrays.copyOf(b, modLen);

int bitpos;
for(bitpos = 1; bitpos < tblmask; ++bitpos) {
table[bitpos] = montgomeryMultiply(t, table[bitpos - 1], mod, modLen, inv, (int[])null);
}

bitpos = 1 << (ebits - 1 & 31);
int buf = 0;
int elen = exp.length;
int eIndex = 0;

int multpos;
for(multpos = 0; multpos <= wbits; ++multpos) {
buf = buf << 1 | ((exp[eIndex] & bitpos) != 0 ? 1 : 0);
bitpos >>>= 1;
if (bitpos == 0) {
++eIndex;
bitpos = -2147483648;
--elen;
}
}

--ebits;
boolean isone = true;

for(multpos = ebits - wbits; (buf & 1) == 0; ++multpos) {
buf >>>= 1;
}

int[] mult = table[buf >>> 1];
buf = 0;
if (multpos == ebits) {
isone = false;
}

while(true) {
--ebits;
buf <<= 1;
if (elen != 0) {
buf |= (exp[eIndex] & bitpos) != 0 ? 1 : 0;
bitpos >>>= 1;
if (bitpos == 0) {
++eIndex;
bitpos = -2147483648;
--elen;
}
}

if ((buf & tblmask) != 0) {
for(multpos = ebits - wbits; (buf & 1) == 0; ++multpos) {
buf >>>= 1;
}

mult = table[buf >>> 1];
buf = 0;
}

if (ebits == multpos) {
if (isone) {
b = (int[])mult.clone();
isone = false;
} else {
a = montgomeryMultiply(b, mult, mod, modLen, inv, a);
t = a;
a = b;
b = t;
}
}

if (ebits == 0) {
int[] t2 = new int[2 * modLen];
System.arraycopy(b, 0, t2, modLen, modLen);
b = montReduce(t2, mod, modLen, (int)inv);
t2 = Arrays.copyOf(b, modLen);
return new BigInteger(1, t2);
}

if (!isone) {
a = montgomerySquare(b, mod, modLen, inv, a);
t = a;
a = b;
b = t;
}
}
}
}

private static int[] montReduce(int[] n, int[] mod, int mlen, int inv) {
int c = 0;
int len = mlen;
int offset = 0;

do {
int nEnd = n[n.length - 1 - offset];
int carry = mulAdd(n, mod, offset, mlen, inv * nEnd);
c += addOne(n, offset, mlen, carry);
++offset;
--len;
} while(len > 0);

while(c > 0) {
c += subN(n, mod, mlen);
}

while(intArrayCmpToLen(n, mod, mlen) >= 0) {
subN(n, mod, mlen);
}

return n;
}

private static int intArrayCmpToLen(int[] arg1, int[] arg2, int len) {
for(int i = 0; i < len; ++i) {
long b1 = (long)arg1[i] & 4294967295L;
long b2 = (long)arg2[i] & 4294967295L;
if (b1 < b2) {
return -1;
}

if (b1 > b2) {
return 1;
}
}

return 0;
}

private static int subN(int[] a, int[] b, int len) {
long sum = 0L;

while(true) {
--len;
if (len < 0) {
return (int)(sum >> 32);
}

sum = ((long)a[len] & 4294967295L) - ((long)b[len] & 4294967295L) + (sum >> 32);
a[len] = (int)sum;
}
}

static int mulAdd(int[] out, int[] in, int offset, int len, int k) {
implMulAddCheck(out, in, offset, len, k);
return implMulAdd(out, in, offset, len, k);
}

private static void implMulAddCheck(int[] out, int[] in, int offset, int len, int k) {
if (len > in.length) {
throw new IllegalArgumentException("input length is out of bound: " + len + " > " + in.length);
} else if (offset < 0) {
throw new IllegalArgumentException("input offset is invalid: " + offset);
} else if (offset > out.length - 1) {
throw new IllegalArgumentException("input offset is out of bound: " + offset + " > " + (out.length - 1));
} else if (len > out.length - offset) {
throw new IllegalArgumentException("input len is out of bound: " + len + " > " + (out.length - offset));
}
}

@HotSpotIntrinsicCandidate
private static int implMulAdd(int[] out, int[] in, int offset, int len, int k) {
long kLong = (long)k & 4294967295L;
long carry = 0L;
offset = out.length - offset - 1;

for(int j = len - 1; j >= 0; --j) {
long product = ((long)in[j] & 4294967295L) * kLong + ((long)out[offset] & 4294967295L) + carry;
out[offset--] = (int)product;
carry = product >>> 32;
}

return (int)carry;
}

static int addOne(int[] a, int offset, int mlen, int carry) {
offset = a.length - 1 - mlen - offset;
long t = ((long)a[offset] & 4294967295L) + ((long)carry & 4294967295L);
a[offset] = (int)t;
if (t >>> 32 == 0L) {
return 0;
} else {
do {
--mlen;
if (mlen < 0) {
return 1;
}

--offset;
if (offset < 0) {
return 1;
}

int var10002 = a[offset]++;
} while(a[offset] == 0);

return 0;
}
}

private BigInteger modPow2(BigInteger exponent, int p) {
BigInteger result = ONE;
BigInteger baseToPow2 = this.mod2(p);
int expOffset = 0;
int limit = exponent.bitLength();
if (this.testBit(0)) {
limit = p - 1 < limit ? p - 1 : limit;
}

while(expOffset < limit) {
if (exponent.testBit(expOffset)) {
result = result.multiply(baseToPow2).mod2(p);
}

++expOffset;
if (expOffset < limit) {
baseToPow2 = baseToPow2.square().mod2(p);
}
}

return result;
}

private BigInteger mod2(int p) {
if (this.bitLength() <= p) {
return this;
} else {
int numInts = p + 31 >>> 5;
int[] mag = new int[numInts];
System.arraycopy(this.mag, this.mag.length - numInts, mag, 0, numInts);
int excessBits = (numInts << 5) - p;
mag[0] = (int)((long)mag[0] & (1L << 32 - excessBits) - 1L);
return mag[0] == 0 ? new BigInteger(1, mag) : new BigInteger(mag, 1);
}
}

public BigInteger modInverse(BigInteger m) {
if (m.signum != 1) {
throw new ArithmeticException("BigInteger: modulus not positive");
} else if (m.equals(ONE)) {
return ZERO;
} else {
BigInteger modVal = this;
if (this.signum < 0 || this.compareMagnitude(m) >= 0) {
modVal = this.mod(m);
}

if (modVal.equals(ONE)) {
return ONE;
} else {
MutableBigInteger a = new MutableBigInteger(modVal);
MutableBigInteger b = new MutableBigInteger(m);
MutableBigInteger result = a.mutableModInverse(b);
return result.toBigInteger(1);
}
}
}

public BigInteger shiftLeft(int n) {
if (this.signum == 0) {
return ZERO;
} else if (n > 0) {
return new BigInteger(shiftLeft(this.mag, n), this.signum);
} else {
return n == 0 ? this : this.shiftRightImpl(-n);
}
}

private static int[] shiftLeft(int[] mag, int n) {
int nInts = n >>> 5;
int nBits = n & 31;
int magLen = mag.length;
int[] newMag = null;
int[] newMag;
if (nBits == 0) {
newMag = new int[magLen + nInts];
System.arraycopy(mag, 0, newMag, 0, magLen);
} else {
int i = 0;
int nBits2 = 32 - nBits;
int highBits = mag[0] >>> nBits2;
if (highBits != 0) {
newMag = new int[magLen + nInts + 1];
newMag[i++] = highBits;
} else {
newMag = new int[magLen + nInts];
}

int j;
for(j = 0; j < magLen - 1; newMag[i++] = mag[j++] << nBits | mag[j] >>> nBits2) {
}

newMag[i] = mag[j] << nBits;
}

return newMag;
}

public BigInteger shiftRight(int n) {
if (this.signum == 0) {
return ZERO;
} else if (n > 0) {
return this.shiftRightImpl(n);
} else {
return n == 0 ? this : new BigInteger(shiftLeft(this.mag, -n), this.signum);
}
}

private BigInteger shiftRightImpl(int n) {
int nInts = n >>> 5;
int nBits = n & 31;
int magLen = this.mag.length;
int[] newMag = null;
if (nInts >= magLen) {
return this.signum >= 0 ? ZERO : negConst[1];
} else {
int newMagLen;
int i;
int nBits2;
int[] newMag;
if (nBits == 0) {
newMagLen = magLen - nInts;
newMag = Arrays.copyOf(this.mag, newMagLen);
} else {
newMagLen = 0;
i = this.mag[0] >>> nBits;
if (i != 0) {
newMag = new int[magLen - nInts];
newMag[newMagLen++] = i;
} else {
newMag = new int[magLen - nInts - 1];
}

nBits2 = 32 - nBits;

for(int j = 0; j < magLen - nInts - 1; newMag[newMagLen++] = this.mag[j++] << nBits2 | this.mag[j] >>> nBits) {
}
}

if (this.signum < 0) {
boolean onesLost = false;
i = magLen - 1;

for(nBits2 = magLen - nInts; i >= nBits2 && !onesLost; --i) {
onesLost = this.mag[i] != 0;
}

if (!onesLost && nBits != 0) {
onesLost = this.mag[magLen - nInts - 1] << 32 - nBits != 0;
}

if (onesLost) {
newMag = this.javaIncrement(newMag);
}
}

return new BigInteger(newMag, this.signum);
}
}

int[] javaIncrement(int[] val) {
int lastSum = 0;

for(int i = val.length - 1; i >= 0 && lastSum == 0; --i) {
lastSum = ++val[i];
}

if (lastSum == 0) {
val = new int[val.length + 1];
val[0] = 1;
}

return val;
}

public BigInteger and(BigInteger val) {
int[] result = new int[Math.max(this.intLength(), val.intLength())];

for(int i = 0; i < result.length; ++i) {
result[i] = this.getInt(result.length - i - 1) & val.getInt(result.length - i - 1);
}

return valueOf(result);
}

public BigInteger or(BigInteger val) {
int[] result = new int[Math.max(this.intLength(), val.intLength())];

for(int i = 0; i < result.length; ++i) {
result[i] = this.getInt(result.length - i - 1) | val.getInt(result.length - i - 1);
}

return valueOf(result);
}

public BigInteger xor(BigInteger val) {
int[] result = new int[Math.max(this.intLength(), val.intLength())];

for(int i = 0; i < result.length; ++i) {
result[i] = this.getInt(result.length - i - 1) ^ val.getInt(result.length - i - 1);
}

return valueOf(result);
}

public BigInteger not() {
int[] result = new int[this.intLength()];

for(int i = 0; i < result.length; ++i) {
result[i] = ~this.getInt(result.length - i - 1);
}

return valueOf(result);
}

public BigInteger andNot(BigInteger val) {
int[] result = new int[Math.max(this.intLength(), val.intLength())];

for(int i = 0; i < result.length; ++i) {
result[i] = this.getInt(result.length - i - 1) & ~val.getInt(result.length - i - 1);
}

return valueOf(result);
}

public boolean testBit(int n) {
if (n < 0) {
throw new ArithmeticException("Negative bit address");
} else {
return (this.getInt(n >>> 5) & 1 << (n & 31)) != 0;
}
}

public BigInteger setBit(int n) {
if (n < 0) {
throw new ArithmeticException("Negative bit address");
} else {
int intNum = n >>> 5;
int[] result = new int[Math.max(this.intLength(), intNum + 2)];

for(int i = 0; i < result.length; ++i) {
result[result.length - i - 1] = this.getInt(i);
}

result[result.length - intNum - 1] |= 1 << (n & 31);
return valueOf(result);
}
}

public BigInteger clearBit(int n) {
if (n < 0) {
throw new ArithmeticException("Negative bit address");
} else {
int intNum = n >>> 5;
int[] result = new int[Math.max(this.intLength(), (n + 1 >>> 5) + 1)];

for(int i = 0; i < result.length; ++i) {
result[result.length - i - 1] = this.getInt(i);
}

result[result.length - intNum - 1] &= ~(1 << (n & 31));
return valueOf(result);
}
}

public BigInteger flipBit(int n) {
if (n < 0) {
throw new ArithmeticException("Negative bit address");
} else {
int intNum = n >>> 5;
int[] result = new int[Math.max(this.intLength(), intNum + 2)];

for(int i = 0; i < result.length; ++i) {
result[result.length - i - 1] = this.getInt(i);
}

result[result.length - intNum - 1] ^= 1 << (n & 31);
return valueOf(result);
}
}

public int getLowestSetBit() {
int lsb = this.lowestSetBitPlusTwo - 2;
if (lsb == -2) {
int lsb = 0;
if (this.signum == 0) {
lsb = lsb - 1;
} else {
int i;
int b;
for(i = 0; (b = this.getInt(i)) == 0; ++i) {
}

lsb = lsb + (i << 5) + Integer.numberOfTrailingZeros(b);
}

this.lowestSetBitPlusTwo = lsb + 2;
}

return lsb;
}

public int bitLength() {
int n = this.bitLengthPlusOne - 1;
if (n == -1) {
int[] m = this.mag;
int len = m.length;
if (len == 0) {
n = 0;
} else {
int magBitLength = (len - 1 << 5) + bitLengthForInt(this.mag[0]);
if (this.signum >= 0) {
n = magBitLength;
} else {
boolean pow2 = Integer.bitCount(this.mag[0]) == 1;

for(int i = 1; i < len && pow2; ++i) {
pow2 = this.mag[i] == 0;
}

n = pow2 ? magBitLength - 1 : magBitLength;
}
}

this.bitLengthPlusOne = n + 1;
}

return n;
}

public int bitCount() {
int bc = this.bitCountPlusOne - 1;
if (bc == -1) {
bc = 0;

int magTrailingZeroCount;
for(magTrailingZeroCount = 0; magTrailingZeroCount < this.mag.length; ++magTrailingZeroCount) {
bc += Integer.bitCount(this.mag[magTrailingZeroCount]);
}

if (this.signum < 0) {
magTrailingZeroCount = 0;

int j;
for(j = this.mag.length - 1; this.mag[j] == 0; --j) {
magTrailingZeroCount += 32;
}

magTrailingZeroCount += Integer.numberOfTrailingZeros(this.mag[j]);
bc += magTrailingZeroCount - 1;
}

this.bitCountPlusOne = bc + 1;
}

return bc;
}

public boolean isProbablePrime(int certainty) {
if (certainty <= 0) {
return true;
} else {
BigInteger w = this.abs();
if (w.equals(TWO)) {
return true;
} else {
return w.testBit(0) && !w.equals(ONE) ? w.primeToCertainty(certainty, (Random)null) : false;
}
}
}

public int compareTo(BigInteger val) {
if (this.signum == val.signum) {
switch(this.signum) {
case -1:
return val.compareMagnitude(this);
case 1:
return this.compareMagnitude(val);
default:
return 0;
}
} else {
return this.signum > val.signum ? 1 : -1;
}
}

final int compareMagnitude(BigInteger val) {
int[] m1 = this.mag;
int len1 = m1.length;
int[] m2 = val.mag;
int len2 = m2.length;
if (len1 < len2) {
return -1;
} else if (len1 > len2) {
return 1;
} else {
for(int i = 0; i < len1; ++i) {
int a = m1[i];
int b = m2[i];
if (a != b) {
return ((long)a & 4294967295L) < ((long)b & 4294967295L) ? -1 : 1;
}
}

return 0;
}
}

final int compareMagnitude(long val) {
assert val != -9223372036854775808L;

int[] m1 = this.mag;
int len = m1.length;
if (len > 2) {
return 1;
} else {
if (val < 0L) {
val = -val;
}

int highWord = (int)(val >>> 32);
int a;
int b;
if (highWord == 0) {
if (len < 1) {
return -1;
} else if (len > 1) {
return 1;
} else {
a = m1[0];
b = (int)val;
if (a != b) {
return ((long)a & 4294967295L) < ((long)b & 4294967295L) ? -1 : 1;
} else {
return 0;
}
}
} else if (len < 2) {
return -1;
} else {
a = m1[0];
if (a != highWord) {
return ((long)a & 4294967295L) < ((long)highWord & 4294967295L) ? -1 : 1;
} else {
a = m1[1];
b = (int)val;
if (a != b) {
return ((long)a & 4294967295L) < ((long)b & 4294967295L) ? -1 : 1;
} else {
return 0;
}
}
}
}
}

public boolean equals(Object x) {
if (x == this) {
return true;
} else if (!(x instanceof BigInteger)) {
return false;
} else {
BigInteger xInt = (BigInteger)x;
if (xInt.signum != this.signum) {
return false;
} else {
int[] m = this.mag;
int len = m.length;
int[] xm = xInt.mag;
if (len != xm.length) {
return false;
} else {
for(int i = 0; i < len; ++i) {
if (xm[i] != m[i]) {
return false;
}
}

return true;
}
}
}
}

public BigInteger min(BigInteger val) {
return this.compareTo(val) < 0 ? this : val;
}

public BigInteger max(BigInteger val) {
return this.compareTo(val) > 0 ? this : val;
}

public int hashCode() {
int hashCode = 0;

for(int i = 0; i < this.mag.length; ++i) {
hashCode = (int)((long)(31 * hashCode) + ((long)this.mag[i] & 4294967295L));
}

return hashCode * this.signum;
}

public String toString(int radix) {
if (this.signum == 0) {
return "0";
} else {
if (radix < 2 || radix > 36) {
radix = 10;
}

if (this.mag.length <= 20) {
return this.smallToString(radix);
} else {
StringBuilder sb = new StringBuilder();
if (this.signum < 0) {
toString(this.negate(), sb, radix, 0);
sb.insert(0, '-');
} else {
toString(this, sb, radix, 0);
}

return sb.toString();
}
}
}

private String smallToString(int radix) {
if (this.signum == 0) {
return "0";
} else {
int maxNumDigitGroups = (4 * this.mag.length + 6) / 7;
String[] digitGroup = new String[maxNumDigitGroups];
BigInteger tmp = this.abs();

int numGroups;
BigInteger q2;
for(numGroups = 0; tmp.signum != 0; tmp = q2) {
BigInteger d = longRadix[radix];
MutableBigInteger q = new MutableBigInteger();
MutableBigInteger a = new MutableBigInteger(tmp.mag);
MutableBigInteger b = new MutableBigInteger(d.mag);
MutableBigInteger r = a.divide(b, q);
q2 = q.toBigInteger(tmp.signum * d.signum);
BigInteger r2 = r.toBigInteger(tmp.signum * d.signum);
digitGroup[numGroups++] = Long.toString(r2.longValue(), radix);
}

StringBuilder buf = new StringBuilder(numGroups * digitsPerLong[radix] + 1);
if (this.signum < 0) {
buf.append('-');
}

buf.append(digitGroup[numGroups - 1]);

for(int i = numGroups - 2; i >= 0; --i) {
int numLeadingZeros = digitsPerLong[radix] - digitGroup[i].length();
if (numLeadingZeros != 0) {
buf.append(zeros[numLeadingZeros]);
}

buf.append(digitGroup[i]);
}

return buf.toString();
}
}

private static void toString(BigInteger u, StringBuilder sb, int radix, int digits) {
int i;
if (u.mag.length > 20) {
int b = u.bitLength();
i = (int)Math.round(Math.log((double)b * LOG_TWO / logCache[radix]) / LOG_TWO - 1.0D);
BigInteger v = getRadixConversionCache(radix, i);
BigInteger[] results = u.divideAndRemainder(v);
int expectedDigits = 1 << i;
toString(results[0], sb, radix, digits - expectedDigits);
toString(results[1], sb, radix, expectedDigits);
} else {
String s = u.smallToString(radix);
if (s.length() < digits && sb.length() > 0) {
for(i = s.length(); i < digits; ++i) {
sb.append('0');
}
}

sb.append(s);
}
}

private static BigInteger getRadixConversionCache(int radix, int exponent) {
BigInteger[] cacheLine = powerCache[radix];
if (exponent < cacheLine.length) {
return cacheLine[exponent];
} else {
int oldLength = cacheLine.length;
cacheLine = (BigInteger[])Arrays.copyOf(cacheLine, exponent + 1);

for(int i = oldLength; i <= exponent; ++i) {
cacheLine[i] = cacheLine[i - 1].pow(2);
}

BigInteger[][] pc = powerCache;
if (exponent >= pc[radix].length) {
pc = (BigInteger[][])pc.clone();
pc[radix] = cacheLine;
powerCache = pc;
}

return cacheLine[exponent];
}
}

public String toString() {
return this.toString(10);
}

public byte[] toByteArray() {
int byteLen = this.bitLength() / 8 + 1;
byte[] byteArray = new byte[byteLen];
int i = byteLen - 1;
int bytesCopied = 4;
int nextInt = 0;

for(int var6 = 0; i >= 0; --i) {
if (bytesCopied == 4) {
nextInt = this.getInt(var6++);
bytesCopied = 1;
} else {
nextInt >>>= 8;
++bytesCopied;
}

byteArray[i] = (byte)nextInt;
}

return byteArray;
}

public int intValue() {
int result = false;
int result = this.getInt(0);
return result;
}

public long longValue() {
long result = 0L;

for(int i = 1; i >= 0; --i) {
result = (result << 32) + ((long)this.getInt(i) & 4294967295L);
}

return result;
}

public float floatValue() {
if (this.signum == 0) {
return 0.0F;
} else {
int exponent = (this.mag.length - 1 << 5) + bitLengthForInt(this.mag[0]) - 1;
if (exponent < 63) {
return (float)this.longValue();
} else if (exponent > 127) {
return this.signum > 0 ? 1.0F / 0.0 : -1.0F / 0.0;
} else {
int shift = exponent - 24;
int nBits = shift & 31;
int nBits2 = 32 - nBits;
int twiceSignifFloor;
if (nBits == 0) {
twiceSignifFloor = this.mag[0];
} else {
twiceSignifFloor = this.mag[0] >>> nBits;
if (twiceSignifFloor == 0) {
twiceSignifFloor = this.mag[0] << nBits2 | this.mag[1] >>> nBits;
}
}

int signifFloor = twiceSignifFloor >> 1;
signifFloor &= 8388607;
boolean increment = (twiceSignifFloor & 1) != 0 && ((signifFloor & 1) != 0 || this.abs().getLowestSetBit() < shift);
int signifRounded = increment ? signifFloor + 1 : signifFloor;
int bits = exponent + 127 << 23;
bits += signifRounded;
bits |= this.signum & -2147483648;
return Float.intBitsToFloat(bits);
}
}
}

public double doubleValue() {
if (this.signum == 0) {
return 0.0D;
} else {
int exponent = (this.mag.length - 1 << 5) + bitLengthForInt(this.mag[0]) - 1;
if (exponent < 63) {
return (double)this.longValue();
} else if (exponent > 1023) {
return this.signum > 0 ? 1.0D / 0.0 : -1.0D / 0.0;
} else {
int shift = exponent - 53;
int nBits = shift & 31;
int nBits2 = 32 - nBits;
int highBits;
int lowBits;
if (nBits == 0) {
highBits = this.mag[0];
lowBits = this.mag[1];
} else {
highBits = this.mag[0] >>> nBits;
lowBits = this.mag[0] << nBits2 | this.mag[1] >>> nBits;
if (highBits == 0) {
highBits = lowBits;
lowBits = this.mag[1] << nBits2 | this.mag[2] >>> nBits;
}
}

long twiceSignifFloor = ((long)highBits & 4294967295L) << 32 | (long)lowBits & 4294967295L;
long signifFloor = twiceSignifFloor >> 1;
signifFloor &= 4503599627370495L;
boolean increment = (twiceSignifFloor & 1L) != 0L && ((signifFloor & 1L) != 0L || this.abs().getLowestSetBit() < shift);
long signifRounded = increment ? signifFloor + 1L : signifFloor;
long bits = (long)(exponent + 1023) << 52;
bits += signifRounded;
bits |= (long)this.signum & -9223372036854775808L;
return Double.longBitsToDouble(bits);
}
}
}

private static int[] stripLeadingZeroInts(int[] val) {
int vlen = val.length;

int keep;
for(keep = 0; keep < vlen && val[keep] == 0; ++keep) {
}

return Arrays.copyOfRange(val, keep, vlen);
}

private static int[] trustedStripLeadingZeroInts(int[] val) {
int vlen = val.length;

int keep;
for(keep = 0; keep < vlen && val[keep] == 0; ++keep) {
}

return keep == 0 ? val : Arrays.copyOfRange(val, keep, vlen);
}

private static int[] stripLeadingZeroBytes(byte[] a, int off, int len) {
int indexBound = off + len;

int keep;
for(keep = off; keep < indexBound && a[keep] == 0; ++keep) {
}

int intLength = indexBound - keep + 3 >>> 2;
int[] result = new int[intLength];
int b = indexBound - 1;

for(int i = intLength - 1; i >= 0; --i) {
result[i] = a[b--] & 255;
int bytesRemaining = b - keep + 1;
int bytesToTransfer = Math.min(3, bytesRemaining);

for(int j = 8; j <= bytesToTransfer << 3; j += 8) {
result[i] |= (a[b--] & 255) << j;
}
}

return result;
}

private static int[] makePositive(byte[] a, int off, int len) {
int indexBound = off + len;

int keep;
for(keep = off; keep < indexBound && a[keep] == -1; ++keep) {
}

int k;
for(k = keep; k < indexBound && a[k] == 0; ++k) {
}

int extraByte = k == indexBound ? 1 : 0;
int intLength = indexBound - keep + extraByte + 3 >>> 2;
int[] result = new int[intLength];
int b = indexBound - 1;

int i;
for(i = intLength - 1; i >= 0; --i) {
result[i] = a[b--] & 255;
int numBytesToTransfer = Math.min(3, b - keep + 1);
if (numBytesToTransfer < 0) {
numBytesToTransfer = 0;
}

int mask;
for(mask = 8; mask <= 8 * numBytesToTransfer; mask += 8) {
result[i] |= (a[b--] & 255) << mask;
}

mask = -1 >>> 8 * (3 - numBytesToTransfer);
result[i] = ~result[i] & mask;
}

for(i = result.length - 1; i >= 0; --i) {
result[i] = (int)(((long)result[i] & 4294967295L) + 1L);
if (result[i] != 0) {
break;
}
}

return result;
}

private static int[] makePositive(int[] a) {
int keep;
for(keep = 0; keep < a.length && a[keep] == -1; ++keep) {
}

int j;
for(j = keep; j < a.length && a[j] == 0; ++j) {
}

int extraInt = j == a.length ? 1 : 0;
int[] result = new int[a.length - keep + extraInt];

int i;
for(i = keep; i < a.length; ++i) {
result[i - keep + extraInt] = ~a[i];
}

for(i = result.length - 1; ++result[i] == 0; --i) {
}

return result;
}

private int intLength() {
return (this.bitLength() >>> 5) + 1;
}

private int signBit() {
return this.signum < 0 ? 1 : 0;
}

private int signInt() {
return this.signum < 0 ? -1 : 0;
}

private int getInt(int n) {
if (n < 0) {
return 0;
} else if (n >= this.mag.length) {
return this.signInt();
} else {
int magInt = this.mag[this.mag.length - n - 1];
return this.signum >= 0 ? magInt : (n <= this.firstNonzeroIntNum() ? -magInt : ~magInt);
}
}

private int firstNonzeroIntNum() {
int fn = this.firstNonzeroIntNumPlusTwo - 2;
if (fn == -2) {
int mlen = this.mag.length;

int i;
for(i = mlen - 1; i >= 0 && this.mag[i] == 0; --i) {
}

fn = mlen - i - 1;
this.firstNonzeroIntNumPlusTwo = fn + 2;
}

return fn;
}

private void readObject(ObjectInputStream s) throws IOException, ClassNotFoundException {
GetField fields = s.readFields();
int sign = fields.get("signum", -2);
byte[] magnitude = (byte[])fields.get("magnitude", (Object)null);
if (sign >= -1 && sign <= 1) {
int[] mag = stripLeadingZeroBytes(magnitude, 0, magnitude.length);
if (mag.length == 0 != (sign == 0)) {
String message = "BigInteger: signum-magnitude mismatch";
if (fields.defaulted("magnitude")) {
message = "BigInteger: Magnitude not present in stream";
}

throw new StreamCorruptedException(message);
} else {
BigInteger.UnsafeHolder.putSign(this, sign);
BigInteger.UnsafeHolder.putMag(this, mag);
if (mag.length >= 67108864) {
try {
this.checkRange();
} catch (ArithmeticException var7) {
throw new StreamCorruptedException("BigInteger: Out of the supported range");
}
}

}
} else {
String message = "BigInteger: Invalid signum value";
if (fields.defaulted("signum")) {
message = "BigInteger: Signum not present in stream";
}

throw new StreamCorruptedException(message);
}
}

private void writeObject(ObjectOutputStream s) throws IOException {
PutField fields = s.putFields();
fields.put("signum", this.signum);
fields.put("magnitude", this.magSerializedForm());
fields.put("bitCount", -1);
fields.put("bitLength", -1);
fields.put("lowestSetBit", -2);
fields.put("firstNonzeroByteNum", -2);
s.writeFields();
}

private byte[] magSerializedForm() {
int len = this.mag.length;
int bitLen = len == 0 ? 0 : (len - 1 << 5) + bitLengthForInt(this.mag[0]);
int byteLen = bitLen + 7 >>> 3;
byte[] result = new byte[byteLen];
int i = byteLen - 1;
int bytesCopied = 4;
int intIndex = len - 1;

for(int nextInt = 0; i >= 0; --i) {
if (bytesCopied == 4) {
nextInt = this.mag[intIndex--];
bytesCopied = 1;
} else {
nextInt >>>= 8;
++bytesCopied;
}

result[i] = (byte)nextInt;
}

return result;
}

public long longValueExact() {
if (this.mag.length <= 2 && this.bitLength() <= 63) {
return this.longValue();
} else {
throw new ArithmeticException("BigInteger out of long range");
}
}

public int intValueExact() {
if (this.mag.length <= 1 && this.bitLength() <= 31) {
return this.intValue();
} else {
throw new ArithmeticException("BigInteger out of int range");
}
}

public short shortValueExact() {
if (this.mag.length <= 1 && this.bitLength() <= 31) {
int value = this.intValue();
if (value >= -32768 && value <= 32767) {
return this.shortValue();
}
}

throw new ArithmeticException("BigInteger out of short range");
}

public byte byteValueExact() {
if (this.mag.length <= 1 && this.bitLength() <= 31) {
int value = this.intValue();
if (value >= -128 && value <= 127) {
return this.byteValue();
}
}

throw new ArithmeticException("BigInteger out of byte range");
}

static {
int i;
for(i = 1; i <= 16; ++i) {
int[] magnitude = new int[]{i};
posConst[i] = new BigInteger(magnitude, 1);
negConst[i] = new BigInteger(magnitude, -1);
}

powerCache = new BigInteger[37][];
logCache = new double[37];

for(i = 2; i <= 36; ++i) {
powerCache[i] = new BigInteger[]{valueOf((long)i)};
logCache[i] = Math.log((double)i);
}

ZERO = new BigInteger(new int[0], 0);
ONE = valueOf(1L);
TWO = valueOf(2L);
NEGATIVE_ONE = valueOf(-1L);
TEN = valueOf(10L);
bnExpModThreshTable = new int[]{7, 25, 81, 241, 673, 1793, 2147483647};
zeros = new String[64];
zeros[63] = "000000000000000000000000000000000000000000000000000000000000000";

for(i = 0; i < 63; ++i) {
zeros[i] = zeros[63].substring(0, i);
}

digitsPerLong = new int[]{0, 0, 62, 39, 31, 27, 24, 22, 20, 19, 18, 18, 17, 17, 16, 16, 15, 15, 15, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12};
longRadix = new BigInteger[]{null, null, valueOf(4611686018427387904L), valueOf(4052555153018976267L), valueOf(4611686018427387904L), valueOf(7450580596923828125L), valueOf(4738381338321616896L), valueOf(3909821048582988049L), valueOf(1152921504606846976L), valueOf(1350851717672992089L), valueOf(1000000000000000000L), valueOf(5559917313492231481L), valueOf(2218611106740436992L), valueOf(8650415919381337933L), valueOf(2177953337809371136L), valueOf(6568408355712890625L), valueOf(1152921504606846976L), valueOf(2862423051509815793L), valueOf(6746640616477458432L), valueOf(799006685782884121L), valueOf(1638400000000000000L), valueOf(3243919932521508681L), valueOf(6221821273427820544L), valueOf(504036361936467383L), valueOf(876488338465357824L), valueOf(1490116119384765625L), valueOf(2481152873203736576L), valueOf(4052555153018976267L), valueOf(6502111422497947648L), valueOf(353814783205469041L), valueOf(531441000000000000L), valueOf(787662783788549761L), valueOf(1152921504606846976L), valueOf(1667889514952984961L), valueOf(2386420683693101056L), valueOf(3379220508056640625L), valueOf(4738381338321616896L)};
digitsPerInt = new int[]{0, 0, 30, 19, 15, 13, 11, 11, 10, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5};
intRadix = new int[]{0, 0, 1073741824, 1162261467, 1073741824, 1220703125, 362797056, 1977326743, 1073741824, 387420489, 1000000000, 214358881, 429981696, 815730721, 1475789056, 170859375, 268435456, 410338673, 612220032, 893871739, 1280000000, 1801088541, 113379904, 148035889, 191102976, 244140625, 308915776, 387420489, 481890304, 594823321, 729000000, 887503681, 1073741824, 1291467969, 1544804416, 1838265625, 60466176};
serialPersistentFields = new ObjectStreamField[]{new ObjectStreamField("signum", Integer.TYPE), new ObjectStreamField("magnitude", byte[].class), new ObjectStreamField("bitCount", Integer.TYPE), new ObjectStreamField("bitLength", Integer.TYPE), new ObjectStreamField("firstNonzeroByteNum", Integer.TYPE), new ObjectStreamField("lowestSetBit", Integer.TYPE)};
}

private static class UnsafeHolder {
private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final long signumOffset;
private static final long magOffset;

private UnsafeHolder() {
}

static void putSign(BigInteger bi, int sign) {
unsafe.putInt(bi, signumOffset, sign);
}

static void putMag(BigInteger bi, int[] magnitude) {
unsafe.putObject(bi, magOffset, magnitude);
}

static {
signumOffset = unsafe.objectFieldOffset(BigInteger.class, "signum");
magOffset = unsafe.objectFieldOffset(BigInteger.class, "mag");
}
}
}

客户端面试

  • 100级台阶,每次上一步或两步,有多少种走法。

573147844013817084101
21

  • 如果200级,你估计有多少种走法(不用编程)。

453973694165307953197296969697410619233826
42

不用编程,估算

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import java.math.BigInteger;
public class Main {

public static void main(String[] args) {
int n = 200;
BigInteger a = BigInteger.ONE;
BigInteger b = BigInteger.ONE;
BigInteger res = BigInteger.ZERO;
for (int i = 2; i <= n; i++) {
res = a.add(b);
a = b;
b = res;
}
System.out.println(res);
System.out.println(res.toString().length());

}
}
  • 给出一个数组,找出两个数[a,b]和为n,不存在则返回[-1,-1]。写出两种解法,不能暴力穷举。

  • 讲讲面向过程、面向对象、面向切面。

  • 指针和数组的关系和区别。

  • 讲讲Android handler。

  • 队列和栈的区别和用途。

  • 两个栈实现队列。

  • 输入Url到浏览器显示过程。

  • http请求方法。

  • get和post区别。

  • surficeView和view的区别。

  • app从点击图标开始的启动全过程。

  • 什么是线程安全。

  • 线程安全有哪些机制。

  • 如何保证 int加加(加号打不出来)线程安全。

  • Android线程间通信有哪些机制。

  • cpu调度方式有哪些。

  • 空间局部性和时间局部性。

  • 数据库乐观锁和悲观锁。

  • 数据库索引作用,优缺点。

  • TCP拥塞控制。

  • https加密传输过程。

  • java内存模型。

  • java垃圾回收算法有哪些。

  • 讲讲标记清除算法。

  • java四中引用。

Java知识点

Java相关

请问JDK和JRE的区别是什么?

JDK :Java 开发工具包,jdk 是整个 Java 开发的核心,它集成了 jre 和一些好用的小工具。
JRE :Java 运行时环境。它主要包含两个部分,jvm 的标准实现和 Java 的一些基本类库。

springboot的注解有什么,原理?

@Bean
用来代替 XML 配置文件里面的 <bean …> 配置。
@ImportResource
如果有些通过类的注册方式配置不了的,可以通过这个注解引入额外的 XML 配置文件,有些老的配置文件无法通过 @Configuration 方式配置的非常管用。
@Import
用来引入额外的一个或者多个 @Configuration 修饰的配置文件类。
@SpringBootConfiguration
这个注解就是 @Configuration 注解的变体,只是用来修饰是 Spring Boot 配置而已,或者可利于 Spring Boot 后续的扩展,源码如下。
@SpringBootApplication:包含了@ComponentScan、@Configuration和@EnableAutoConfiguration注解。其中@ComponentScan让spring Boot扫描到Configuration类并把它加入到程序上下文。
@Configuration 等同于spring的XML配置文件;使用Java代码可以检查类型安全。
@EnableAutoConfiguration 自动配置。
@ComponentScan 组件扫描,可自动发现和装配一些Bean。
@Component可配合CommandLineRunner使用,在程序启动后执行一些基础任务。
@RestController注解是@Controller和@ResponseBody的合集,表示这是个控制器bean,并且是将函数的返回值直 接填入HTTP响应体中,是REST风格的控制器。
@Autowired自动导入。
@PathVariable获取参数。
@JsonBackReference解决嵌套外链问题。
@RepositoryRestResourcepublic配合spring-boot-starter-data-rest使用。

@RequestMapping:@RequestMapping(“/path”)表示该控制器处理所有“/path”的UR L请求。RequestMapping是一个用来处理请求地址映射的注解,可用于类或方法上。
用于类上,表示类中的所有响应请求的方法都是以该地址作为父路径。该注解有六个属性:
params:指定request中必须包含某些参数值是,才让该方法处理。
headers:指定request中必须包含某些指定的header值,才能让该方法处理请求。
value:指定请求的实际地址,指定的地址可以是URI Template 模式
method:指定请求的method类型, GET、POST、PUT、DELETE等
consumes:指定处理请求的提交内容类型(Content-Type),如application/json,text/html;
produces:指定返回的内容类型,仅当request请求头中的(Accept)类型中包含该指定类型才返回

@RequestParam:用在方法的参数前面。
@RequestParam
String a =request.getParameter(“a”)。

@PathVariable:路径变量。如

1
2
3
4
@RequestMapping(“user/get/mac/{macAddress}”) 
public String getByMacAddress(@PathVariable String macAddress){
//do something;
}

Spring Boot的自动配置看起来神奇,其实原理非常简单,背后全依赖于@Conditional注解来实现的。

object类中的hashCode()方法是做什么的,以及其中的hash()方法是做什么的, 为什么有hash()方法还有hashCode()

哈希表这个数据结构想必大多数人都不陌生,而且在很多地方都会利用到hash表来提高查找效率。在Java的Object类中有一个方法:

1
public native int hashCode();

根据这个方法的声明可知,该方法返回一个int类型的数值,并且是本地方法,因此在Object类中并没有给出具体的实现。

hashCode方法的作用

对于包含容器类型的程序设计语言来说,基本上都会涉及到hashCode。在Java中也一样,hashCode方法的主要作用是为了配合基于散列的集合一起正常运行,这样的散列集合包括HashSet、HashMap以及HashTable。

  为什么这么说呢?考虑一种情况,当向集合中插入对象时,如何判别在集合中是否已经存在该对象了?(注意:集合中不允许重复的元素存在)

  也许大多数人都会想到调用equals方法来逐个进行比较,这个方法确实可行。但是如果集合中已经存在一万条数据或者更多的数据,如果采用equals方法去逐一比较,效率必然是一个问题。此时hashCode方法的作用就体现出来了,当集合要添加新的对象时,先调用这个对象的hashCode方法,得到对应的hashcode值,实际上在HashMap的具体实现中会用一个table保存已经存进去的对象的hashcode值,如果table中没有该hashcode值,它就可以直接存进去,不用再进行任何比较了;如果存在该hashcode值, 就调用它的equals方法与新元素进行比较,相同的话就不存了,不相同就散列其它的地址,所以这里存在一个冲突解决的问题,这样一来实际调用equals方法的次数就大大降低了,说通俗一点:Java中的hashCode方法就是根据一定的规则将与对象相关的信息(比如对象的存储地址,对象的字段等)映射成一个数值,这个数值称作为散列值。

hash 算法

1
2
3
4
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

首先,假设有一种情况,对象 A 的 hashCode 为 1000010001110001000001111000000,对象 B 的 hashCode 为 0111011100111000101000010100000。

如果数组长度是16,也就是 15 与运算这两个数, 你会发现结果都是0。这样的散列结果太让人失望了。很明显不是一个好的散列算法。

但是如果我们将 hashCode 值右移 16 位,也就是取 int 类型的一半,刚好将该二进制数对半切开。并且使用位异或运算(如果两个数对应的位置相反,则结果为1,反之为0),这样的话,就能避免我们上面的情况的发生。

总的来说,使用位移 16 位和 异或 就是防止这种极端情况。但是,该方法在一些极端情况下还是有问题,比如:10000000000000000000000000 和 1000000000100000000000000 这两个数,如果数组长度是16,那么即使右移16位,在异或,hash 值还是会重复。但是为了性能,对这种极端情况,JDK 的作者选择了性能。毕竟这是少数情况,为了这种情况去增加 hash 时间,性价比不高。

hashmap的put过程 主要就是根据自己看过的源码说一下流程

put 方法
通过 hash 计算下标并检查 hash 是否冲突,也就是对应的下标是否已存在元素。

1
2
3
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
  1. 判断数组是否为空,如果是空,则创建默认长度位 16 的数组。
  2. 通过与运算计算对应 hash 值的下标,如果对应下标的位置没有元素,则直接创建一个。
  3. 如果有元素,说明 hash 冲突了,则再次进行 3 种判断。
    1. 判断两个冲突的key是否相等,equals 方法的价值在这里体现了。如果相等,则将已经存在的值赋给变量e。最后更新e的value,也就是替换操作。
    2. 如果key不相等,则判断是否是红黑树类型,如果是红黑树,则交给红黑树追加此元素。
    3. 如果key既不相等,也不是红黑树,则是链表,那么就遍历链表中的每一个key和给定的key是否相等。如果,链表的长度大于等于8了,则将链表改为红黑树,这是Java8 的一个新的优化。
  4. 最后,如果这三个判断返回的 e 不为null,则说明key重复,则更新key对应的value的值。
  5. 对维护着迭代器的modCount 变量加一。
  6. 最后判断,如果当前数组的长度已经大于阀值了。则重新hash。

ArrayList LinkList的特点

ArrayList是实现了基于动态数组的结构,LinkedList则是基于实现链表的数据结构。

数据的更新和查找
ArrayList的所有数据是在同一个地址上,而LinkedList的每个数据都拥有自己的地址.所以在对数据进行查找的时候,由于LinkedList的每个数据地址不一样,get数据的时候ArrayList的速度会优于LinkedList,而更新数据的时候,虽然都是通过循环循环到指定节点修改数据,但LinkedList的查询速度已经是慢的,而且对于LinkedList而言,更新数据时不像ArrayList只需要找到对应下标更新就好,LinkedList需要修改指针,速率不言而喻

数据的增加和删除
对于数据的增加元素,ArrayList是通过移动该元素之后的元素位置,其后元素位置全部+1,所以耗时较长,而LinkedList只需要将该元素前的后续指针指向该元素并将该元素的后续指针指向之后的元素即可。与增加相同,删除元素时ArrayList需要将被删除元素之后的元素位置-1,而LinkedList只需要将之后的元素前置指针指向前一元素,前一元素的指针指向后一元素即可。当然,事实上,若是单一元素的增删,尤其是在List末端增删一个元素,二者效率不相上下。

红黑树定义

红黑树本质上是一种二叉查找树,但它在二叉查找树的基础上额外添加了一个标记(颜色),同时具有一定的规则。这些规则使红黑树保证了一种平衡,插入、删除、查找的最坏时间复杂度都为 O(logn)。

它的统计性能要好于平衡二叉树(AVL树),因此,红黑树在很多地方都有应用。比如在 Java 集合框架中,很多部分(HashMap, TreeMap, TreeSet 等)都有红黑树的应用,这些集合均提供了很好的性能。

由于 TreeMap 就是由红黑树实现的。

黑色高度
从根节点到叶节点的路径上黑色节点的个数,叫做树的黑色高度。

  1. 每个节点要么是红色,要么是黑色;
  2. 根节点永远是黑色的;
  3. 所有的叶节点都是是黑色的(注意这里说叶子节点其实是上图中的 NIL 节点);
  4. 每个红色节点的两个子节点一定都是黑色;
  5. 从任一节点到其子树中每个叶子节点的路径都包含相同数量的黑色节点;

Java 反射机制

Java 反射机制在程序运行时,对于任意一个类,都能够知道这个类的所有属性和方法;对于任意一个对象,都能够调用它的任意一个方法和属性。这种 动态的获取信息 以及 动态调用对象的方法 的功能称为 java 的反射机制。

1
2
3
4
5
6
public class FatherClass {
public String mFatherName;
public int mFatherAge;

public void printFatherMsg(){}
}

多线程相关

synchronized

synchronized 是 Java 中的关键字,是利用锁的机制来实现同步的。

锁机制有如下两种特性:

  • 互斥性:即在同一时间只允许一个线程持有某个对象锁,通过这种特性来实现多线程中的协调机制,这样在同一时间只有一个线程对需同步的代码块(复合操作)进行访问。互斥性我们也往往称为操作的原子性。

  • 可见性:必须确保在锁被释放之前,对共享变量所做的修改,对于随后获得该锁的另一个线程是可见的(即在获得锁时应获得最新共享变量的值),否则另一个线程可能是在本地缓存的某个副本上继续操作从而引起不一致。

synchronized 可以修饰方法和代码块

  • synchronized(this|object) {}
  • synchronized(类.class) {}
  • 修饰非静态方法
  • 修饰静态方法

reentrantLock 除了可重入还有什么关键特性

  • 可重入

现在有方法 m1 和 m2,两个方法均使用了同一把锁对方法进行同步控制,同时方法 m1 会调用 m2。线程 t 进入方法 m1 成功获得了锁,此时线程 t 要在没有释放锁的情况下,调用 m2 方法。由于 m1 和 m2 使用的是同一把可重入锁,所以线程 t 可以进入方法 m2,并再次获得锁,而不会被阻塞住。

  • 公平和非公平锁

公平与非公平指的是线程获取锁的方式。公平模式下,线程在同步队列中通过 FIFO 的方式获取锁,每个线程最终都能获取锁。在非公平模式下,线程会通过“插队”的方式去抢占锁,抢不到的则进入同步队列进行排队。默认情况下,ReentrantLock 使用的是非公平模式获取锁,而不是公平模式。不过我们也可通过 ReentrantLock 构造方法ReentrantLock(boolean fair)调整加锁的模式。

ThreadLocal 会造成什么问题? 为什么会造成内存泄漏?

  • ThreadLocal类用来提供线程内部的局部变量。这些变量在多线程环境下访问(通过get或set方法访问)时能保证各个线程里的变量相对独立于其他线程内的变量,ThreadLocal实例通常来说都是private static类型。 总结:ThreadLocal不是为了解决多线程访问共享变量,而是为每个线程创建一个单独的变量副本,提供了保持对象的方法和避免参数传递的复杂性。
  • ThreadLocal的主要应用场景为按线程多实例(每个线程对应一个实例)的对象的访问,并且这个对象很多地方都要用到。例如:同一个网站登录用户,每个用户服务器会为其开一个线程,每个线程中创建一个ThreadLocal,里面存用户基本信息等,在很多页面跳转时,会显示用户信息或者得到用户的一些信息等频繁操作,这样多线程之间并没有联系而且当前线程也可以及时获取想要的数据。

ThreadLocal类提供了四个对外开放的接口方法

(1) void set(Object value)设置当前线程的线程局部变量的值。
(2) public Object get()该方法返回当前线程所对应的线程局部变量。
(3) public void remove()将当前线程局部变量的值删除,目的是为了减少内存的占用。
(4) protected Object initialValue()返回该线程局部变量的初始值。

在threadLocal设为null和线程结束这段时间不会被回收的,就发生了我们认为的内存泄露。其实这是一个对概念理解的不一致,也没什么好争论的。

最要命的是线程对象不被回收的情况,这就发生了真正意义上的内存泄露。比如使用线程池的时候,线程结束是不会销毁的,会再次使用的就可能出现内存泄露。(在web应用中,每次http请求都是一个线程,tomcat容器配置使用线程池时会出现内存泄漏问题)

  1. 使用ThreadLocal,建议用static修饰 static ThreadLocal headerLocal = new ThreadLocal();
  2. 使用完ThreadLocal后,执行remove操作,避免出现内存溢出情况。

单例模式 synchronized实现懒汉模式?为什么用内部类是线程安全的?

内部类

单例模式,有“懒汉式”和“饿汉式”两种。
懒汉式
单例类的实例在第一次被引用时候才被初始化。
饿汉式
单例类的实例在加载的时候就被初始化。

静态内部类模式

1
2
3
4
5
6
7
8
9
10
public class Singleton { 
private Singleton(){
}
public static Singleton getSingleton(){
return Inner.instance;
}
private static class Inner {
private static final Singleton instance = new Singleton();
}
}
  1. 实现代码简洁。和双重检查单例对比,静态内部类单例实现代码真的是太简洁,又清晰明了。
  2. 延迟初始化。调用getSingleton才初始化Singleton对象。
  3. 线程安全。JVM在执行类的初始化阶段,会获得一个可以同步多个线程对同一个类的初始化的锁。

线程A和线程B同时试图获得Singleton对象的初始化锁,假设线程A获取到了,那么线程B一直等待初始化锁。线程A执行类初始化,就算双重检查模式中伪代码发生了重排序,也不会影响线程A的初始化结果。初始化完后,释放锁。线程B获得初始化锁,发现Singleton对象已经初始化完毕,释放锁,不进行初始化,获得Singleton对象。

数据库相关

添加索引的时候要注意什么

索引可以提高数据的访问速度,但同时也增加了插入、更新和删除操作的处理时间。所以是否要为表增加索引、索引建立在那些字段上,是创建索引前必须要考虑的问题。解决此问题就是分析应用程序的业务处理、数据使用,为经常被用作查询条件、或者被要求排序的字段建立索引。

1、表的主键、外键必须有索引;
2、数据量超过300的表应该有索引;
3、经常与其他表进行连接的表,在连接字段上应该建立索引;
4、经常出现在Where子句中的字段,特别是大表的字段,应该建立索引;
5、索引应该建在选择性高的字段上;
6、索引应该建在小字段上,对于大的文本字段甚至超长字段,不要建索引;
7、复合索引的建立需要进行仔细分析;

聚簇索引:
通常由主键或者非空唯一索引实现的,叶子节点存储了一整行数据
非聚簇索引:
又称二级索引,就是我们常用的普通索引,叶子节点存了索引值和主键值,在根据主键从聚簇索引查

索引优化以及在使用索引的时候要注意什么

1.索引列不要使用函数和运算

  1. 尽量避免使用 != 或 not in或 <> 等否定操作符
  2. 当查询条件为多个的时候,可以采用复合索引
  3. 范围查询对多列查询的影响
  4. 遵循最左匹配原则
    复合索引遵守“最左前缀”原则,即在查询条件中使用了复合索引的第一个字段,索引才会被使用。因此,在复合索引中索引列的顺序至关重要。如果不是按照索引的最左列开始查找,则无法使用索引。
  5. 索引列不会包含NULL值
  6. 尽量避免使用 or 来连接条件
  7. 隐式转换的影响
  8. like 语句的索引失效问题

redis的键的淘汰策略,会达成了redis缓存的淘汰策略

Redis作为一个高性能的内存NoSQL数据库,其容量受到最大内存限制的限制。
事实上,实例中的内存除了保存原始的键值对所需的开销外,还有一些运行时产生的额外内存,包括:

  1. 垃圾数据和过期Key所占空间
  2. 字典渐进式Rehash导致未及时删除的空间
  3. Redis管理数据,包括底层数据结构开销,客户端信息,读写缓冲区等
  4. 主从复制,bgsave时的额外开销

为了防止一次性清理大量过期Key导致Redis服务受影响,Redis只在空闲时清理过期Key。

  • 访问Key时,会判断Key是否过期,逐出过期Key;
  • CPU空闲时在定期serverCron任务中,逐出部分过期Key;
  • 每次事件循环执行的时候,逐出部分过期Key;

网络相关

tcp四次握手,最后的状态是什么?

等待2MSL的时间?(MSL最长报文段寿命Maximum Segment Lifetime,MSL=2)

为什么要等着2MSL,等待多了会造成什么

  1. 保证A发送的最后一个ACK报文段能够到达B。
  2. 防止“已失效的连接请求报文段”出现在本连接中。A在发送完最后一个ACK报文段后,再经过2MSL,就可以使本连接持续的时间内所产生的所有报文段都从网络中消失,使下一个新的连接中不会出现这种旧的连接请求报文段。

http请求的报文结构,keep-alive是用来做什么的

当使用Keep-Alive模式(又称持久连接、连接重用)时,Keep-Alive功能使客户端到服 务器端的连接持续有效,当出现对服务器的后继请求时,Keep-Alive功能避免了建立或者重新建立连接。

1
2
Keep-Alive: timeout=5, max=100
timeout:过期时间5秒(对应httpd.conf里的参数是:KeepAliveTimeout),max是最多一百次请求,强制断掉连接

spring spingboot

spring为什么要注入接口,而不是实现类

首先说明,注入的对象确实为实现类的对象。(并不是实现类的代理对象,注入并不涉及代理)

  如果只是单纯注入是可以用实现类接收注入对象的,但是往往开发中会对实现类做增强,如事务,日志等,实现增强的AOP技术是通过动态代理实现的,而spring默认是JDK动态代理,对实现类对象做增强得到的增强类与实现类是兄弟关系,所以不能用实现类接收增强类对象,只能用接口接收。

回答没听过这个概念,然后被引导回到IOC和AOP,以及AOP是什么,实现过程

Java动态代理为我们提供了非常灵活的代理机制,但Java动态代理是基于接口的,如果目标对象没有实现接口我们该如何代理呢?这时候我们就需要使用CGLIB来实现AOP了。

假如我们要使用动态代理实现AOP,那么我们只能在写一个增强的接口,然后让目标类实现增强接口,然后我们就可以使用动态代理实现目标类的增强,可是假如我们不想让目标类实现其他的接口,那么我们就只能使用CGLIB技术来实现目标类的增强了。
CGLIB实现目标类增强的原理是这样的:CGLIB会动态创建一个目标类的子类,然后返回该子类的对象,也就是增强对象,至于增强的逻辑则是在子类中完成的。我们知道子类要么和父类有一样的功能,要么就比父类功能强大,所以CGLIB是通过创建目标类的子类对象来实现增强的,所以:

1
目标子类 = 目标类 + 增强逻辑

口述算法思路

给一个栈的数据结构,实现另外一个数据结构,要求保留栈的特性,同时能够提供去最大值和最小值的方法,时间复杂度为O(1)

最小值思路:用一个辅助栈stack2记住每次入栈stack1的当前最小值:在stack1入栈时,往stack2中加入当前最小值;stack1元素出栈时,stack2也出栈一个元素。最小值从stack2中获取及栈顶元素。O(1)

最大值思路:同上O(1)

image.png

网络编程

哪几种IO类型

  • 阻塞I/O(blocking IO)
  • 非阻塞I/O (nonblocking I/O)
  • I/O 复用 (I/O multiplexing)
  • 信号驱动I/O (signal driven I/O (SIGIO))
  • 异步I/O (asynchronous I/O)

JVM

JVM的内存结构

  • 堆(Heap):线程共享。所有的对象实例以及数组都要在堆上分配。回收器主要管理的对象。
  • 方法区(Method Area):线程共享。存储类信息、常量、静态变量、即时编译器编译后的代码。
  • 方法栈(JVM Stack):线程私有。存储局部变量表、操作栈、动态链接、方法出口,对象指针。
  • 本地方法栈(Native Method Stack):线程私有。为虚拟机使用到的Native 方法服务。如Java使用c或者c++编写的接口服务时,代码在此区运行。
  • 程序计数器(Program Counter Register):线程私有。有些文章也翻译成PC寄存器(PC Register),同一个东西。它可以看作是当前线程所执行的字节码的行号指示器。指向下一条要执行的指令。

image.png

类加载机制

Java虚拟机把描述类的数据从Class文件加载到内存,并对数据进行校验、转换解析和初始化,最终形成可以被虚拟机直接使用的Java类型,这就是虚拟机的加载机制。*
Class文件由类装载器装载后,在JVM中将形成一份描述Class结构的元信息对象,通过该元信息对象可以获知Class的结构信息:如构造函数,属性和方法等,Java允许用户借由这个Class相关的元信息对象间接调用Class对象的功能,这里就是我们经常能见到的Class类。

image.png

双亲委派模型

双亲委派的意思是如果一个类加载器需要加载类,那么首先它会把这个类请求委派给父类加载器去完成,每一层都是如此。一直递归到顶层,当父加载器无法完成这个请求时,子类才会尝试去加载。这里的双亲其实就指的是父类,没有mother。父类也不是我们平日所说的那种继承关系,只是调用逻辑是这样。

双亲委派模型不是一种强制性约束,也就是你不这么做也不会报错怎样的,它是一种JAVA设计者推荐使用类加载器的方式。

有什么想问我的

有的

  1. 你怎样形容小米公司的企业文化?
  2. 什么类型的员工能在小米公司有比较好的发展?
  3. 关于软件开发工程师-Java方向岗位的技术栈、日常主要工作是什么、期间可以获得晋升机会?
  4. 能给我多讲讲招聘程序吗?
  5. 我没有其他问题了,与您交流非常愉快,能留一张您的名片么?(或者方便加一下您的微信么?)

面试笔记

牛客许愿的小米一面,贡献面经

1
许愿能挺进二面,加油,向着目标冲呀~~~~

——java集合相关

object类中的hashCode()方法是做什么的,以及其中的hash()方法是做什么的, 为什么有hash()方法还有hashCode()

hashmap的put过程 主要就是根据自己看过的源码说一下流程
ArrayList LinkList的特点

——多线程相关

synchronized

reettrantLock 除了可重入还有什么关键特性

threadLocal threadLocal 会造成什么问题 为什么会造成内存泄漏

单例模式 synchronized实现懒汉模式 答 内部类 为什么用内部类是线程安全的?

——数据库相关

添加索引的时候要注意什么

索引优化以及在使用索引的时候要注意什么

redis的键的淘汰策略,会达成了redis缓存的淘汰策略

——网络相关

tcp四次握手,最后的状态是什么,回答等待2MSL

为什么要等着2MSL,等待多了会造成什么

http请求的报文结构,keep-alive是用来做什么的

——spring spingboot

spring中对象增强如何实现 回答没听过这个概念,然后被引导回到IOC和AOP,以及AOP是什么,实现过程

——口述算法思路

给一个栈的数据结构,实现另外一个数据结构,要求保留栈的特性,同时能够提供去最大值和最小值的方法,时间复杂度为O(1)

之前一直没明白是要做什么,后来想到做过类似的题。幸好只是说思路,没有要手写,那个时候已经被前面几个回答的不太好的问题难的很紧张,说做个简单的算法题的时候,我的心紧紧一颤,心想,你确定会简单,还好,还好,结果下来没那么难

——网络编程

哪几种IO类型

还有一个问题 有点忘了,这一块在简历上写了,不过掌握的不是很好

——JVM

类加载机制——回答了一下双亲委派模型相关的内容

——有什么想问我的

面试官蛮年轻,真的很好,一直在引导我回答问题,不会的也没有揪着不放很喜欢说,我们接下来问一个简单的问题,哈哈哈,简单简单着就变得不简单了

是自己比较满意的一次面试

既展示了自己所掌握的知识,也暴露了掌握知识中的问题,给自己后面的复习有了一定的指引

感谢CYC大佬的秘籍

1
2
3
4

最后,重要的话再来几次

许愿能挺进二面,加油,向着目标冲呀~~~~

许愿能挺进二面,加油,向着目标冲呀

1
许愿能挺进二面,加油,向着目标冲呀

Java12的新特性

Java12的新特性

Java5的新特性
Java6的新特性
Java7的新特性
Java8的新特性
Java9的新特性
Java10的新特性
Java11的新特性
Java12的新特性
Java13的新特性

image.png

版本号

1
2
3
4
java -version
openjdk version "12" 2019-03-19
OpenJDK Runtime Environment (build 12+33)
OpenJDK 64-Bit Server VM (build 12+33, mixed mode)

从version信息可以看出是build 12+33

特性列表

Shenandoah GC是一个面向low-pause-time的垃圾收集器,它最初由Red Hat实现,支持aarch64及amd64 architecture;ZGC也是面向low-pause-time的垃圾收集器,不过ZGC是基于colored pointers来实现,而Shenandoah GC是基于brooks pointers来实现;如果要使用Shenandoah GC需要编译时–with-jvm-features选项带有shenandoahgc,然后启动时使用-XX:+UnlockExperimentalVMOptions -XX:+UseShenandoahGC

在jdk源码里头新增了一套基础的microbenchmarks suite

对switch进行了增强,除了使用statement还可以使用expression,比如原来的写法如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
switch (day) {
case MONDAY:
case FRIDAY:
case SUNDAY:
System.out.println(6);
break;
case TUESDAY:
System.out.println(7);
break;
case THURSDAY:
case SATURDAY:
System.out.println(8);
break;
case WEDNESDAY:
System.out.println(9);
break;
}

现在可以改为如下写法:

1
2
3
4
5
6
switch (day) {
case MONDAY, FRIDAY, SUNDAY -> System.out.println(6);
case TUESDAY -> System.out.println(7);
case THURSDAY, SATURDAY -> System.out.println(8);
case WEDNESDAY -> System.out.println(9);
}

以及在表达式返回值

1
2
3
4
5
6
int numLetters = switch (day) {
case MONDAY, FRIDAY, SUNDAY -> 6;
case TUESDAY -> 7;
case THURSDAY, SATURDAY -> 8;
case WEDNESDAY -> 9;
};

对于需要返回值的switch expression要么正常返回值要么抛出异常,以下这两种写法都是错误的

1
2
3
4
5
6
7
8
9
10
11
12
13
14
int i = switch (day) {
case MONDAY -> {
System.out.println("Monday");
// ERROR! Block doesn't contain a break with value
}
default -> 1;
};
i = switch (day) {
case MONDAY, TUESDAY, WEDNESDAY:
break 0;
default:
System.out.println("Second half of the week");
// ERROR! Group doesn't contain a break with value
};

新增了JVM Constants API,具体来说就是java.base模块新增了java.lang.constant包,引入了ConstantDesc接口(ClassDesc、MethodTypeDesc、MethodHandleDesc这几个接口直接继承了ConstantDesc接口)以及Constable接口;ConstantDesc接口定义了resolveConstantDesc方法,Constable接口定义了describeConstable方法;String、Integer、Long、Float、Double均实现了这两个接口,而EnumDesc实现了ConstantDesc接口

64-bit Arm platform (arm64),也可以称之为aarch64;之前JDK有两个关于aarch64的实现,分别是src/hotspot/cpu/arm以及open/src/hotspot/cpu/aarch64,它们的实现重复了,为了集中精力更好地实现aarch64,该特性在源码中删除了open/src/hotspot/cpu/arm中关于64-bit的实现,保留其中32-bit的实现,于是open/src/hotspot/cpu/aarch64部分就成了64-bit ARM architecture的默认实现

java10的新特性JEP 310: Application Class-Data Sharing扩展了JDK5引入的Class-Data Sharing,支持application的Class-Data Sharing;Class-Data Sharing可以用于多个JVM共享class,提升启动速度,最早只支持system classes及serial GC,JDK9对其进行扩展以支持application classes及其他GC算法,并在JDK10中开源出来(以前是commercial feature);JDK11将-Xshare:off改为默认-Xshare:auto,以更加方便使用CDS特性;JDK12的这个特性即在64-bit平台上编译jdk的时候就默认在${JAVA_HOME}/lib/server目录下生成一份名为classes.jsa的默认archive文件(大概有18M)方便大家使用

G1在garbage collection的时候,一旦确定了collection set(CSet)开始垃圾收集这个过程是without stopping的,当collection set过大的时候,此时的STW时间会过长超出目标pause time,这种情况在mixed collections时候比较明显。这个特性启动了一个机制,当选择了一个比较大的collection set,允许将其分为mandatory及optional两部分(当完成mandatory的部分,如果还有剩余时间则会去处理optional部分)来将mixed collections从without stopping变为abortable,以更好满足指定pause time的目标

G1目前只有在full GC或者concurrent cycle的时候才会归还内存,由于这两个场景都是G1极力避免的,因此在大多数场景下可能不会及时会还committed Java heap memory给操作系统。JDK12的这个特性新增了两个参数分别是G1PeriodicGCInterval及G1PeriodicGCSystemLoadThreshold,设置为0的话,表示禁用。当上一次garbage collection pause过去G1PeriodicGCInterval(milliseconds)时间之后,如果getloadavg()(one-minute)低于G1PeriodicGCSystemLoadThreshold指定的阈值,则触发full GC或者concurrent GC(如果开启G1PeriodicGCInvokesConcurrent),GC之后Java heap size会被重写调整,然后多余的内存将会归还给操作系统

细项解读

上面列出的是大方面的特性,除此之外还有一些api的更新及废弃,主要见JDK 12 Release Notes,这里举几个例子。
添加项

  • 支持unicode 11
  • 支持Compact Number Formatting

使用实例如下

1
2
3
4
5
6
7
8
9
10
@Test
public void testCompactNumberFormat(){
var cnf = NumberFormat.getCompactNumberInstance(Locale.CHINA, NumberFormat.Style.SHORT);
System.out.println(cnf.format(1_0000));
System.out.println(cnf.format(1_9200));
System.out.println(cnf.format(1_000_000));
System.out.println(cnf.format(1L << 30));
System.out.println(cnf.format(1L << 40));
System.out.println(cnf.format(1L << 50));
}

输出

1
2
3
4
5
6
1万
2万
100万
11亿
1兆
1126兆
  • String支持transform、indent操作
1
2
3
4
5
6
7
8
9
10
11
12
13
14
@Test
public void testStringTransform(){
System.out.println("hello".transform(new Function<String, Integer>() {
@Override
public Integer apply(String s) {
return s.hashCode();
}
}));
}

@Test
public void testStringIndent(){
System.out.println("hello".indent(3));
}

Files新增mismatch方法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
@Test
public void testFilesMismatch() throws IOException {
FileWriter fileWriter = new FileWriter("/tmp/a.txt");
fileWriter.write("a");
fileWriter.write("b");
fileWriter.write("c");
fileWriter.close();

FileWriter fileWriterB = new FileWriter("/tmp/b.txt");
fileWriterB.write("a");
fileWriterB.write("1");
fileWriterB.write("c");
fileWriterB.close();

System.out.println(Files.mismatch(Path.of("/tmp/a.txt"),Path.of("/tmp/b.txt")));
}
  • Collectors新增teeing方法用于聚合两个downstream的结果
1
2
3
4
5
6
7
8
9
10
11
@Test
public void testCollectorTeeing(){
var result = Stream.of("Devoxx","Voxxed Days","Code One","Basel One")
.collect(Collectors.teeing(Collectors.filtering(n -> n.contains("xx"),Collectors.toList()),
Collectors.filtering(n -> n.endsWith("One"),Collectors.toList()),
(List<String> list1, List<String> list2) -> List.of(list1,list2)
));

System.out.println(result.get(0));
System.out.println(result.get(1));
}
  • CompletionStage新增exceptionallyAsync、exceptionallyCompose、exceptionallyComposeAsync方法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
@Test
public void testExceptionallyAsync() throws ExecutionException, InterruptedException {
LOGGER.info("begin");
int result = CompletableFuture.supplyAsync(() -> {
LOGGER.info("calculate");
int i = 1/0;
return 100;
}).exceptionallyAsync((t) -> {
LOGGER.info("error error:{}",t.getMessage());
return 0;
}).get();

LOGGER.info("result:{}",result);
}
  • JDK12之前CompletionStage只有一个exceptionally,该方法体在主线程执行,JDK12新增了exceptionallyAsync、exceptionallyComposeAsync方法允许方法体在异步线程执行,同时新增了exceptionallyCompose方法支持在exceptionally的时候构建新的CompletionStage

  • Allocation of Old Generation of Java Heap on Alternate Memory Devices

G1及Parallel GC引入experimental特性,允许将old generation分配在诸如NV-DIMM memory的alternative memory device

  • ZGC: Concurrent Class Unloading

ZGC在JDK11的时候还不支持class unloading,JDK12对ZGC支持了Concurrent Class Unloading,默认是开启,使用-XX:-ClassUnloading可以禁用

  • 新增-XX:+ExtensiveErrorReports

-XX:+ExtensiveErrorReports可以用于在jvm crash的时候收集更多的报告信息到hs_err.log文件中,product builds中默认是关闭的,要开启的话,需要自己添加-XX:+ExtensiveErrorReports参数

  • 新增安全相关的改进

支持java.security.manager系统属性,当设置为disallow的时候,则不使用SecurityManager以提升性能,如果此时调用System.setSecurityManager则会抛出UnsupportedOperationException
keytool新增-groupname选项允许在生成key pair的时候指定一个named group
新增PKCS12 KeyStore配置属性用于自定义PKCS12 keystores的生成
Java Flight Recorder新增了security-related的event
支持ChaCha20 and Poly1305 TLS Cipher Suites

  • jdeps Reports Transitive Dependences

jdeps的–print-module-deps, –list-deps, 以及–list-reduce-deps选项得到增强,新增–no-recursive用于non-transitive的依赖分析,–ignore-missing-deps用于suppress missing dependence errors

移除项

  • 移除com.sun.awt.SecurityWarnin
  • 移除FileInputStream、FileOutputStream、Java.util.ZipFile/Inflator/Deflator的finalize方法
  • 移除GTE CyberTrust Global Root
  • 移除javac的-source, -target对6及1.6的支持,同时移除–release选项

废弃项

  • 废弃的API列表见deprecated-list
  • 废弃-XX:+/-MonitorInUseLists选项
  • 废弃Default Keytool的-keyalg值

已知问题

  • Swing不支持GTK+ 3.20及以后的版本
  • 在使用JVMCI Compiler(比如Graal)的时候,JVMTI的can_pop_frame及can_force_early_return的capabilities是被禁用的

其他事项

  • 如果用户没有指定user.timezone且从操作系统获取的为空,那么user.timezone属性的初始值为空变为null
  • java.net.URLPermission的行为发生轻微变化,以前它会忽略url中的query及fragment部分,这次改动新增query及fragment部分,即scheme : // authority [ / path ]变动为scheme : // authority [ / path ] [ ignored-query-or-fragment ]
  • javax.net.ssl.SSLContext API及Java Security Standard Algorithm Names规范移除了必须实现TLSv1及TLSv1.1的规定

小结

  • java12不是LTS(Long-Term Support)版本(oracle版本才有LTS),oracle对该版本的support周期为6个月。这个版本主要有几个更新点,一个是语法层更新,一个是API层面的更新,另外主要是GC方面的更新。
  • 语法层面引入了preview版本的Switch Expressions;API层面引入了JVM Constants API,引入CompactNumberFormat,让NumberFormat支持COMPACTSTYLE,对String、Files、Collectors、CompletionStage等新增方法;GC方面引入了experimental版本的Shenandoah GC,不过oracle build的openjdk没有enable Shenandoah GC support;另外主要对ZGC及G1 GC进行了改进
  • 其中JDK12对ZGC支持了Concurrent Class Unloading,默认是开启,使用-XX:-ClassUnloading可以禁用;对于G1 GC则新增支持Abortable Mixed Collections以及Promptly Return Unused Committed Memory特性

作者:go4it
链接:https://juejin.im/post/5c91fcc9e51d45563b62382c
来源:掘金

Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×